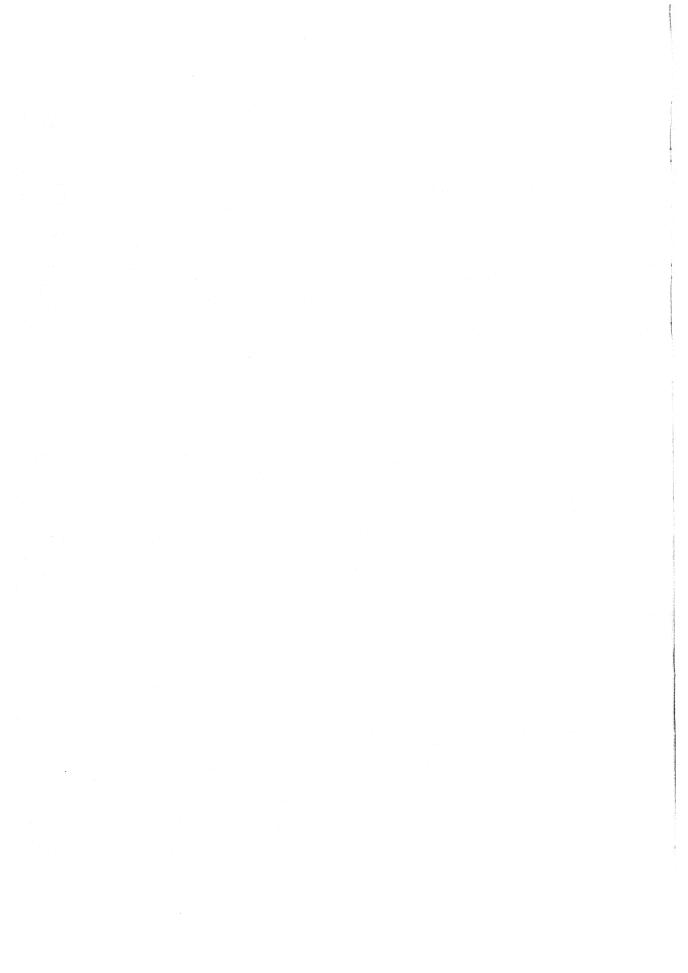

MITSUBISHI LSI DATA BOOK

SUPPLEMENT TO '80 LSI DATA BOOK



All values shown in this catalogue are subject to change for product improvement.

The information, diagrams and all other data included herein are believed to be correct and reliable. However, no responsibility is assumed by Mitsubishi Electric Corporation for their use, nor for any infringements of patents or other rights belonging to third parties which may result from their use.

MELPS and MELCS are registered trademarks of Mitsubishi Electric Corporation.

	INDEXES
2	ORDERING INFORMATION AND PACKAGE OUTLINES 2-1~2-15
3	GENERAL INFORMATION 3-1~3-8
4	RANDOM-ACCESS MEMORIES
5	READ-ONLY MEMORIES 5-1~5-6
6	MELPS 42 MICROCOMPUTERS 6-1~6-14
7	MELPS 8-48 MICROCOMPUTERS
8	MELPS 86 MICROPROCESSORS 8-1~8-34
9	LSIs FOR PERIPHERAL CIRCUITS 9-1~9-50
10	GENERAL-PURPOSE MOS LSIs
11	MICROCOMPUTER SYSTEMS 11-1~11-20
12	MICROCOMPUTER SUPPORT SYSTEMS 12-1~12-6
13	MICROCOMPUTER SOFTWARE 13-1~13-8

PREFACE

Thank you for your continued patronage of Mitsubishi Electric and our semiconductor products.

Semiconductor devices are a mainstay of the burgeoning electronics industry, where they are finding more and more applications, and meeting demands for increased sophistication and diversification of performance and function.

We have already published the 1980 Mitsubishi LSI Data Book, but after then a number of new products are announced, then we have prepared the supplement to the 1980 Mitsubishi LSI Data Book.

This supplement provides detailed specifications of new products, including 16K-bit static RAMs, 32K-bit EPROMs, MELPS 42 single-chip CMOS 4-bit microcomputer, MELPS 8-48 single-chip 8-bit microcomputers, MELPS 86 16-bit microprocessor, board computers and their development and support system, along with additional MOS LSI devices.

We hope you will let us know of any mistakes or omissions that come to your attention, and any suggestions you might have on improving the usefulness of this data book.

January, 1981

Kimio Sato, General Manager Semiconductors Division Mitsubishi Electric Corporation

MITSUBISHI LSIS CONTENTS

1	INDEXES Index by Function	Page 1—	e 2
2	ORDERING INFORMATION AND PACKAGE OUTLINES Ordering Information	2- 2- 2- 2- 2- 2-1 2-1 2-1 2-1	55678901234
3	GENERAL INFORMATION Letter Symbols for the Dynamic parameters Symbology	3- 3-	3 6
	RANDOM-ACCESS MEMORIES M58725P, S; P-15, S-15 16384-Bit (2048-Word by 8-Bit) Static RAM	4—	3
	READ-ONLY MEMORIES M5L2732K, K-6 32768-Bit (4096-Word by 8-Bit) Erasable and Electrically Reprogrammable	5-	3
	MELPS 42 MICROCOMPUTERS M58496-XXXP Single-Chip 4-Bit CMOS Microcomputer	6	3
7	MELPS 8-48 MICROCOMPUTERS Function of MELPS 8-48 Microcomputers M5L8048-XXXP Single-Chip 8-Bit Microcomputer M5L8748S Single-Chip 8-Bit Microcomputer with EPROM M5L8049-XXXP, M5L8039P-6 Single-Chip 8-Bit Microcomputers	7-2 7-2	?1 ?5
8	MELPS 86 MICROPROCESSORS M5L8086S 16-Bit Parallel Microprossor	8	3
9	LSIs FOR PERIPHERAL CIRCUITS M58990P 8-Bit 8-Channel A-D Converter M5C6847P-1 Video Display Generator M5L8155P 2048-Bit Static RAM with I/O Ports and Timer M5L8156P 2048-Bit Static RAM with I/O Ports and Timer M5L8259AP Programmable Interrupt Controller M5W1791-02P Floppy Disk Formatter/Controller	9-1 9-1 9-2 9-3	5 23 31

MITSUBISHI LSIS CONTENTS

GENERAL-PURPOSE MOS LSIS	Page
M50110XP, M50115XP 30- or 120-Function Remote-Control Transmitters	10- 3
M50110XP, M50115XP 30- or 120-Function Remote-Control Transmitters	10- 9
11 MICROCOMPUTER SYSTEMS	
MICROCOMPUTER SYSTEMS	
PCA8506 MELSC 85/2 Memory and Parallel I/O Expansion Board	11- 3
PCA8506 MELSC 85/2 Memory and Parallel I/O Expansion Board PCA8507 MELCS 85/2 Memory and Serial I/O Expansion Board	11- 7
PCA8520G01, G02 MELCS 85/3 Voice Generating Single-Board Computer	11-11
PCA8540G01, G02 MELCS 85/2 Color TV Display Single-Board Computer	11-15
12 MICROCOMPUTER SUPPORT SYSTEMS	
MICROCOMPUTER SUPPORT SYSTEMS	
PC0400 MELCS 4/1 Portable Development Support System	12- 3
13 MICROCOMPUTER SOFTWARE	
MEI DE 42 Seferare Const Assembler	40 0
MELPS 42 Software Cross Assembler	13- 3
MELPS 42 Software Paper-Tape Generation Program for PROM Writers	13— 7

INDEXES

MITSUBISHI LSIs **INDEX BY FUNCTION**

Type (Note 1)		Former designation	Circuit function and organization	Application notes	Structure (Note 2)	Ambient operating temp. Ta(°C)
tatic RAMs						
M58725P, S-19 M58725P, S	5 * *	· -	16384-Bit(2048×8) Static RAM	Power down by $\overline{\text{CS}}$	N,Si,ED	0~70
ield-Programn	nable	ROMs (EP	PROMs)			
M5L2732K M5L2732K-6	*	_	32768-Bit (4096×8) Erasable and Electrically Reprogrammable ROM	Electrical programming ultraviolet erasing	N,Si,FA	0~70
Single-Chip Mi	croco	omputers				
M58496-XXXP	**		Single-Chip 4-Bit CMOS Microcomputer	77 instructions mask-prog ROM 1K-word by 10-Bit, RAM 128-word by 4-Bit	C,AI	_10~70
M5L8048-XXX	P *	_	Single-Chip 8-Bit Microcomputer	96 instructions mask-prog ROM 1K-word by 8-bit RAM 64-word by 8-bit	N,Si,ED	0~70
M5L8049-XXX	P *		Single-Chip 8-Bit Microcomputer	96 instructions mask-prog ROM 2K-word by 8-bit RAM 128-word by 8-bit	N,Si,ED	0~70
M5L8039P -6	*		Single-Chip 8-Bit Microcomputer	96 instructions RAM 128-word by 8-bit	N,Si,ED	0~70
M5L8748S	**		Single-Chip 8-Bit Microcomputer with EPROM	96 instructions EPROM 1K-word by 8-bit RAM 64-word by 8-bit	N.Si.ED	0~70
/licroprocessor	's					
M5L8086S	**		16-Bit Microprocessor	97 instructions 1M-Byte direct access 16-bit CPU	N,Si,ED	0~70
.Sls for Periph	eral (Circuits				
M58990P	**	_	8-Bit, 8-channel A-D Converter		C,Si	0~70
M5C6847P-1	*	_	Video Display Generator	4 different alphanumeric and 8 different graphic display modes	N,Si,ED	0~70
M5L8355P	*		2048-Bit Static RAM with I/O Ports and Timer	256-word×8-Bit RAM with 22 I/O low pins and 14-Bits counter/timer CE=low active	N,Si,ED	0~70
M5L8156P	*	alexander.	2048-Bit Static RAM with I/O Ports and Timer	256 word×8-Bit RAM with 22 I/O pins and 14-Bit counter/timer CE≈high active	N,Si,ED	0~70
M5L8259AP	*	administra	Programmable Interrupt Controller	8 vectored priority interrupts	N,Si,ED	0~70
M5W1791-02P	**	Velocies	Floppy Disk Formatter/Controller	Single and double density formats	N,Si,ED	0~70
General Purpos	e M	OS LSIs				
M50110XP	*		30-Function Remete-Control Transmitter		C, Al	-30~70
M50115XP	*	_	120-Function Remote-Control Transmitter		C, Al	30~70
M50111XP	*	Anna	120-Function Remote-Control Receiver		C, Al	—30 ~ 70
M50116XP	*		120-Function Remote-Control Receiver		C, Al	-30~70
M50117XP	*		120-Function Receiver Remote-Control		C, Al	-30~70

MITSUBISHI LSIS INDEX BY FUNCTION

S	upply voltage			CIS I		Electric	al chara	cteristics		1	Interchang	eable products	-
V _{DD}	Vcc	V _{SS} GND	V _{BB}	Clock voltage $V_1(\phi)$	Typ pwr dissi- pasion (mW)	Max. access time (ns)	Max. cycle time (ns)	Max. fre- quency (MHz)	TTL com- pati- bility	Package (Note3)	Mfr.	Туре	Page
						-			- 				
	E\/ : 40**	011			200	150	150			24P1	-	TMS4016-15	T
	5V±10%	0V	_	, -	200	200	200		Yes	24S1	TI	TMS4016	4-3
												- 1	
	EV 1 FO	0) (400	450	_			24810	INITE	D2732	T .
	5V±5%	0V	_		400	550	_	_	Yes	24K10	INTEL	D2732-6	5-3
													- 1
- 1	5V±5%	0V			5		7700	4.2	Yes	72P2	_		6-3
-	5V±10%	0V	_		325		_	6	Yes	40P1	INTEL	P8048	7-21
_	5V±10%	0V	_	_	500			- 6	Yes	40P1	INTEL	P8049	7-33
_	5V±10%	0V	-	_	500	_	_	6	Yes	40P1	INTEL	P8039	7-33
_	5V±5%	0V	_	_	500	_	_	6	Yes	40S10	INTEL	C8748	7-25
· · · · · · · · · · · · · · · · · · ·			1.										
_	5V±10%	0V	_	3.9V	1375	_	-	5	Yes	40S1	INTEL	C8086	8-3
										l			
		01.					1			2001	NC	1000000	
	5V±10%	0V	_			-	_	_	Yes	28P4	NS	ADC0808	9-3
_	5V±5%	0V	_	2.4V	500	_	_	3.85	Yes	40P1	MOTOROLA	MC6847-1	9-5
_	5V±5%	0V	water	_	500	_			Yes	40P1	INTEL	P8155	9-15
_	5V±5%	0V	_		500		_	_	Yes	40P1	INTEL	P8156	9-23
_	5V±10%	0V	_	_	275	_	_	-	Yes	28P4	INTEL	P8259A	9-31
	5V±5%	0V	_	-	-	300	_		Yes	40P1	WESTERN DIGITAL	FD1791-02B	9-45
					•								
.2~8V	Acres.	0V	_	_	_	_	_	_	_	16P4	_	_	10-3
.2~8V	_	0V	_	_	_	- Marine	_			18P4	_		10-3
.5~8V	roma.	0V	_	_	THEORY	_	_	_	Yes	16P4	_		10-9
.4~8V	_	0V					_	_	Yes	18P4	_	_	10-9
.5~8V	_	0V		_		_	_		Yes	18P4	_		10-9
		0V 24 S		—— Num —— Pack K = G —— Pack 1 = D	der of pins age structur	e ceramic. F in.	² =Molded		S=Meta	al-sealed cer	amic		10-

INDEX BY FUNCTION

Туре	Function	Application notes	Memory	capacity ROM	I/O port	Ambient operating temp	Supply voltage	Dimensions (I×w×h)	Page
(Note4)			(bytes)	(bytes)	(bits)	Ta (°C)	(V)	(mm)	

Microcomputer System

PCA8506 *	MELCS 85/2 Memory and Parallel I/O Expansion Board	For PCA8501 PCA8540	12K(I	Note1)	48	0~55	5	125×145×17	11-3
PCA8507 *	MELCS 85/2 Memory and Serial I/O Expansion Board	For PCA8501,PCA8540	12K(N	Note1)	1 (serial)	0~55	12.5,—12	125×145×17	11-7
PCA8520G01 * PCA8520G02 *	MELCS 85/3 Voice Generating Single-Board Computer	Using M5L8085AP	256	16K (Note2)	24	0~55	5,—5	125×145×20	11-11
PCA8540G01* PCA8540G02*	MELCS 85/2 Color TV Dis- play Single-Board Computer	Using M5L8085AP and M5C6847P-1	256	4K (Note3)	22	5~40	5.—5	125×145×20	11-15

Note 1: The standard product contains neither M5L2716K 2K-byte EPROMs or M58725P 2K-byte static RAMs. 2: The PCA8520G01 does not contains M5L2716K EPROMs. The PCA8520G01 contains standard voice stored in eight M5L2716K EPROMs. 3: The standard product contains no M5L2716K EPROMs.

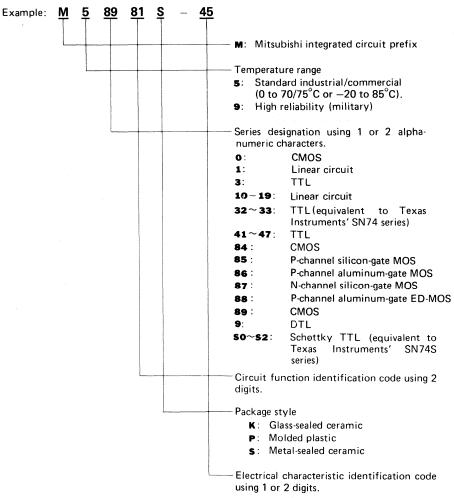
Microcomputer Support Systems

MELPS Software

Program	Program code number	Normal shipping media	Source language
MELPS 42 Cross Assembler	GB1AS0010	Magnetic tape	FORTRAN (part in assembler)
MELPS 42 Paper-Tape Generation Program for PROM Writers	GB1SP0006	Magnetic tape	FORTRAN (part in assembler)

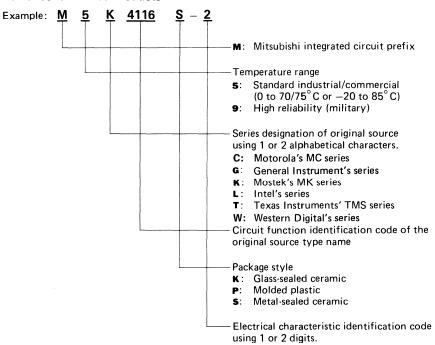
^{4: *:} New Product;

ORDERING INFORMATION AND PACKAGE OUTLINES

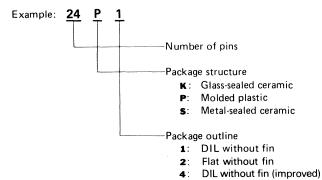


ORDERING INFORMATION

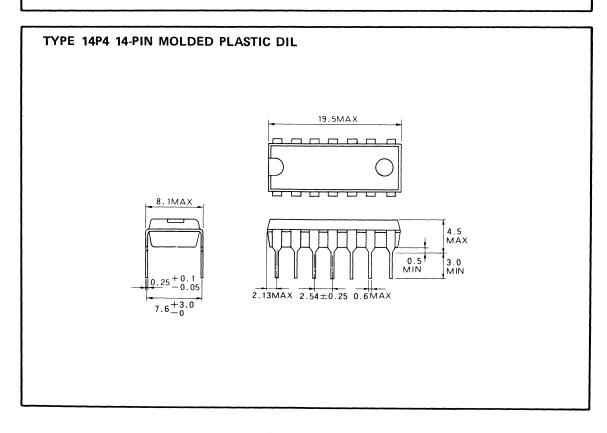
FUNCTION CODE

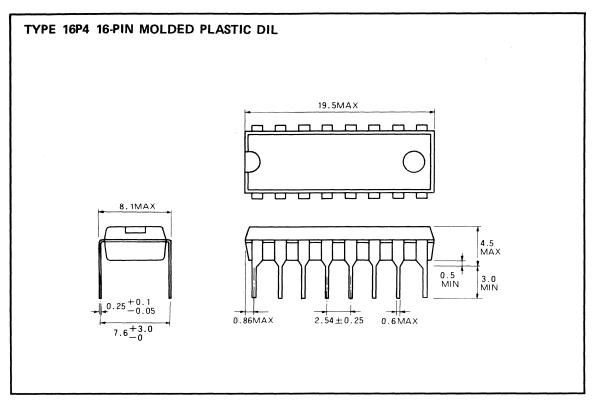

Mitsubishi integrated circuits may be ordered using the following simplified alphanumeric type-codes which define the function of the ICs and the package style.

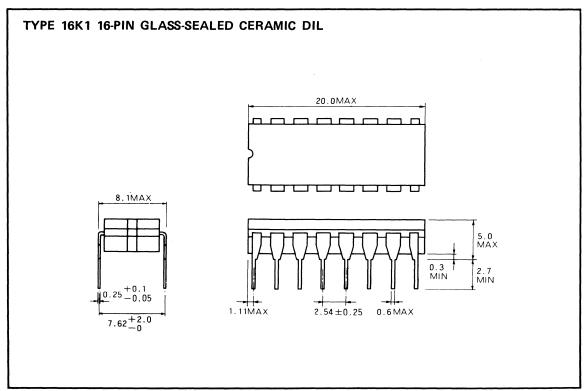
For Mitsubishi Original Products

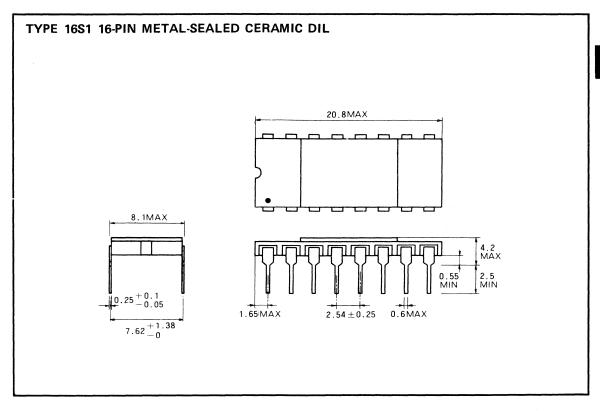

ORDERING INFORMATION

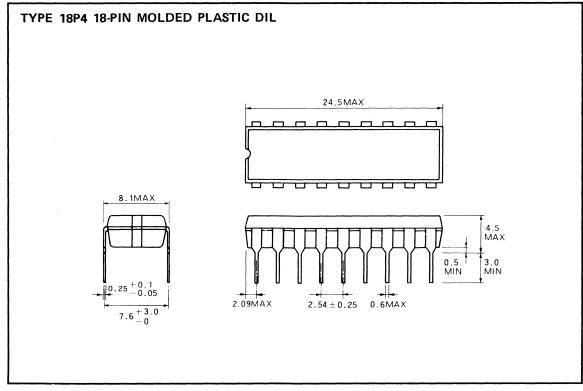
For Second Source Products

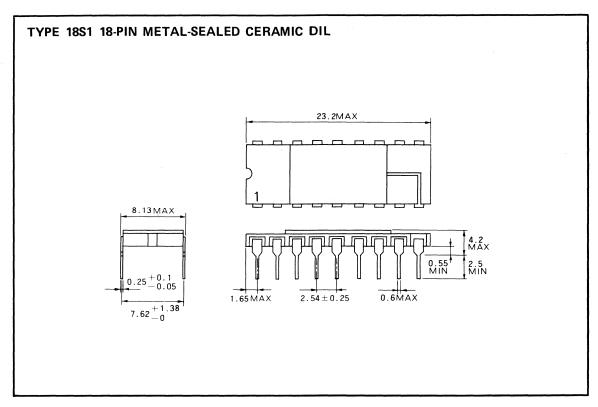


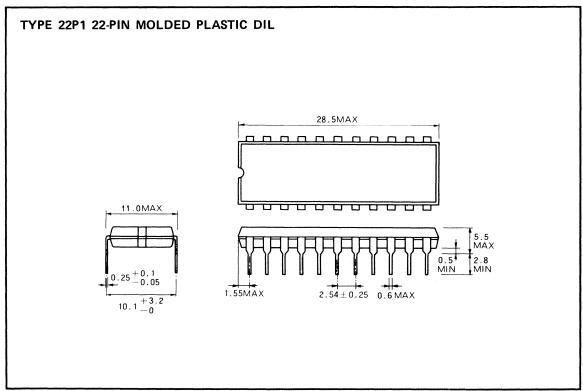

PACKAGE CODE

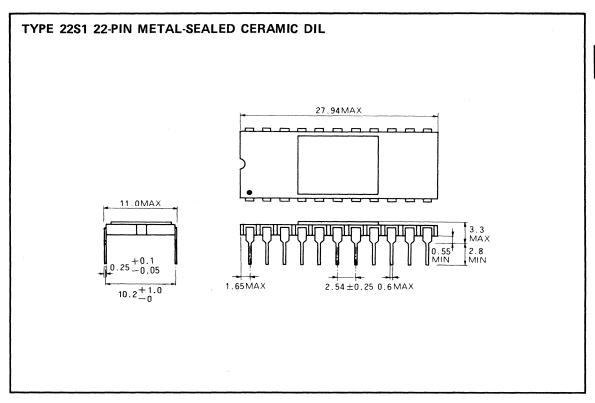

Package style may be specified by using the following simplified alphanumeric code.

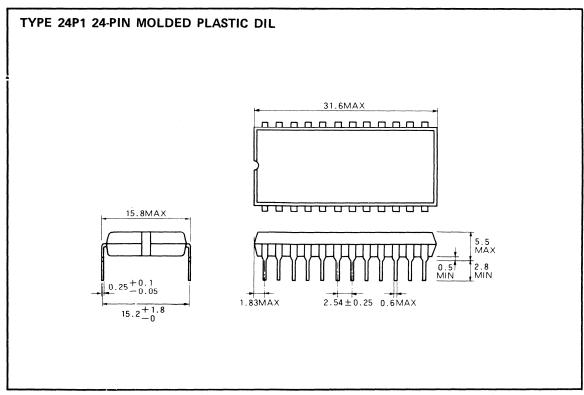


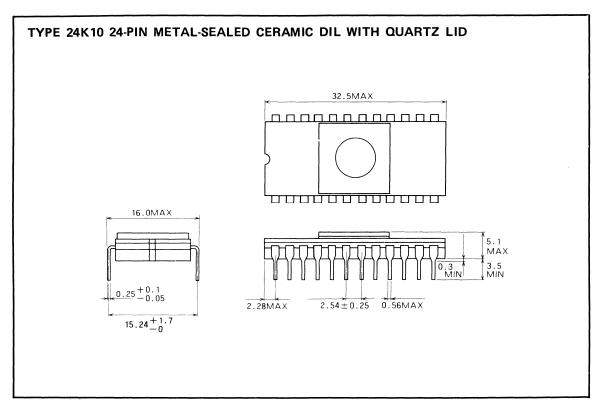


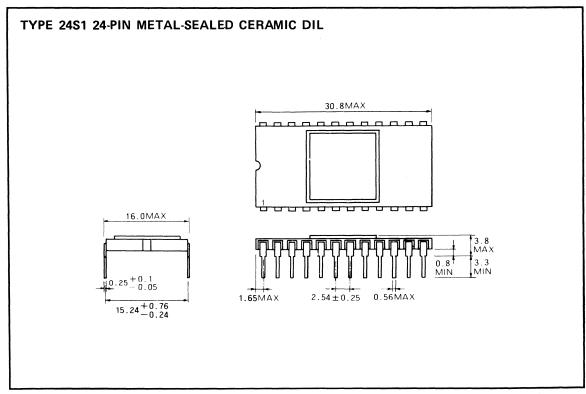




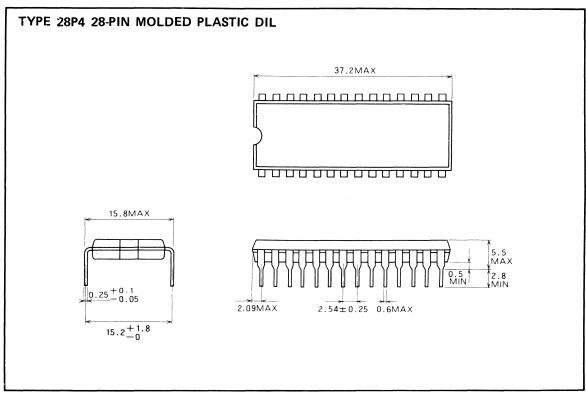


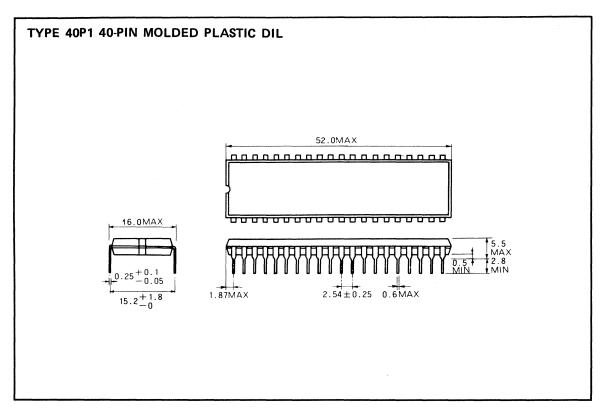


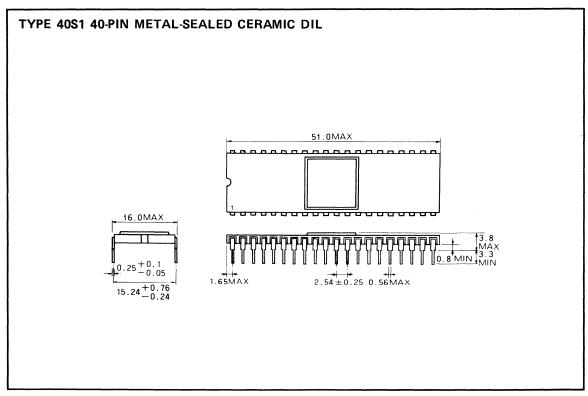


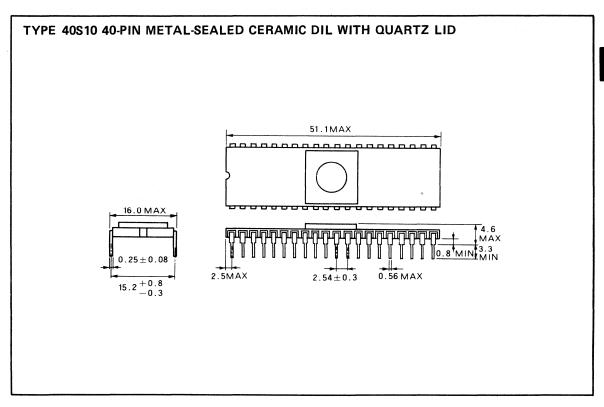


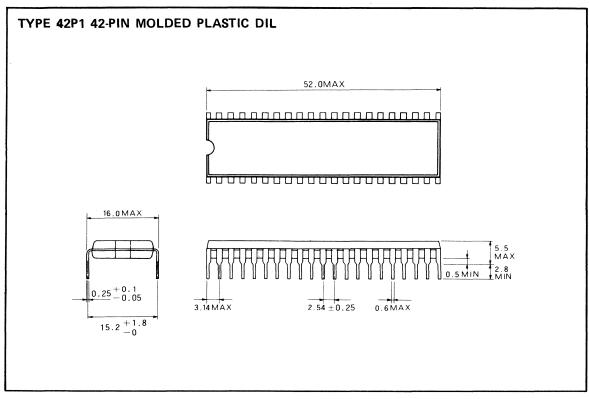


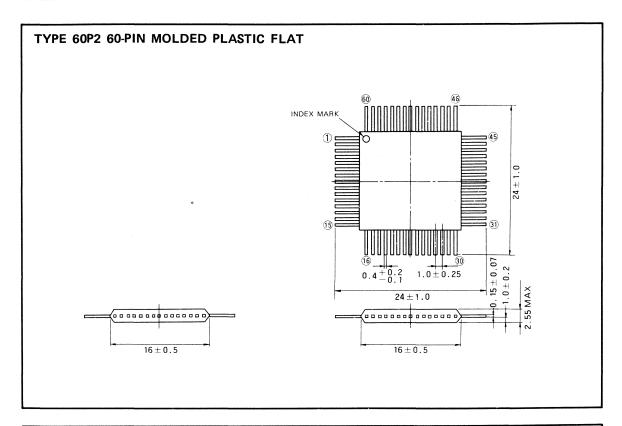


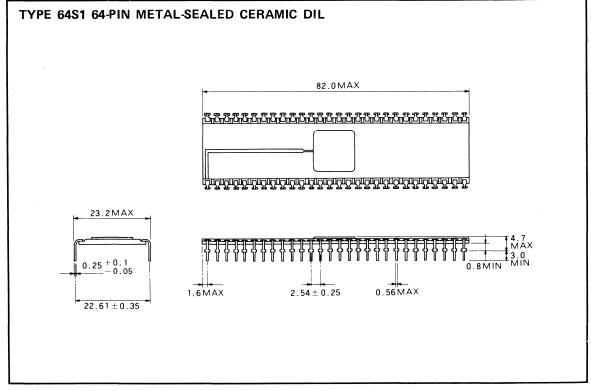


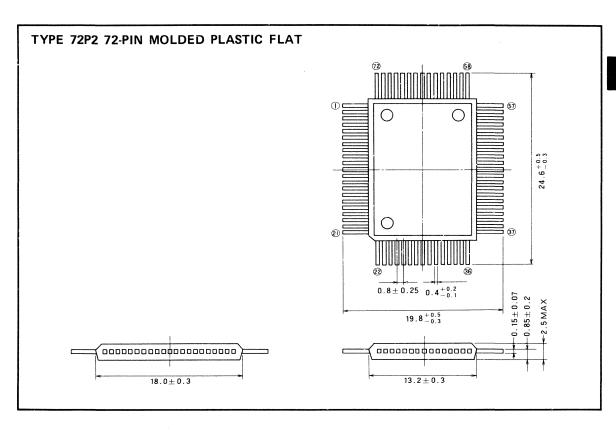












GENERAL INFORMATION

3

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

1. INTRODUCTION

A system of letter symbols to be used to represent the dynamic parameters of intergrated circuit memories and other sequential circuits especially for single-chip microcomputers, microprocessors and LSIs for pheripheral circuits has been discussed internationally in the TC47 of the International Electrotechnical Committee (IEC). Finally the IEC has decided on the meeting of TC47 in February 1980 that this system of letter symbols will be a Central Office document and circulated to all countries to vote which means this system of letter symbols will be a international standard.

The system is applied in this LSI data book for the new products only. Future editions of this data book will be applied this system. The IEC document which describes "Letter symbols for dynamic parameters of sequential integrated circuits, including memories" is introduced below. In this data book, the dynamic parameters in the IEC document are applied to timing requirements and switching characteristics.

2. LETTER SYMBOLS

The system of letter symbols outlined in this document enables symbols to be generated for the dynamic parameters of complex sequential circuits, including memories, and also allows these symbols to be abbreviated to simple mnemonic symbols when no ambiguity is likely to arise.

2.1. General Form

The dynamic parameters are represented by a general symbol of the form:-

where:

Subscript A indicates the type of dynamic parameter being represented, for example; cycle

time, setup time, enable time, etc.

Subscript B indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur first, that is, at the beginning of the time interval. If this event actually occurs last, that is, at the end of the time interval, the value of the time interval is negative.

Subscript C indicates the direction of the transition and/or the final state or level of the signal represented by B. When two letters are used, the initial state or level is also indicated.

Subscript D indicates the name of the signal or terminal for which a change of state or level (or establishment of a state or level) constitutes a signal event assumed to occur last, that is, at the end of the time interval. If this event actually occurs first, that is, at the beginning of the time interval, the

value of the time interval is negative.

Subscript E indicates the direction of the transition and/or the final state or level of the signal represented by D. When two letters are used, the initial state or level is also indicated.

Subscript F indicates additional information such as mode of operation, test conditions, etc.

Note 1: Subscripts A to F may each consists of one or more letters.

- 2: Subscripts D and E are not used for transition times.
- 3: The "-" in the symbol (1) above is used to indicate "to"; hence the symbol represents the time interval from signal event B occurring to signal event D occurring, and it is important to note that this convention is used for all dynamic parameters including hold times. Where no misunderstanding can occur the hyphen may be omitted.

2.2. Abbreviated Form

The general symbol given above may be abbreviated when no misunderstanding is likely to arise. For example to:

t_{A(B-D)}

or tA(B)

or t_{A(D)} - often used for hold times

or t_{AF} - no brackets are used in this case

or t_A

or t_{BC-DE} — often used for unclassified time intervals

2.3. Allocation of Subscripts

In allocating letter symbols for the subscripts, the most commonly used subscripts are given single letters where practicable and those less commonly used are designated by up to three letters. As far as possible, some form of mnemonic representation is used. Longer letter symbols may be used for specialised signals or terminals if this aids understanding.

3. SUBSCRIPT A (For Type of Dynamic Parameter)

The subscript A represents the type of dynamic parameter to be designated by the symbol and, for memories, the parameters may be divided into two classes:

 a) those that are timing requirements for the memory and

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

b) those that are characteristics of the memory. The letter symbols so far proposed for memory circuits are listed in sub-clauses 3.1 and 3.2 below.

All subscripts A should be in lower-case.

3.1. Timing Requirements

The letter symbols for the timing requirements of semiconductor memories are as follows:

Term	Subscript
Cycle time	С
Time interval between two signal events	d
Fall time	f
Hold time	h
Precharging time	рс
Rise time	r
Recovery time	rec
Refresh time interval	rf
Setup time	su
Transition time	t
Pulse duration (width)	w

3.2. Characteristics

The letter symbols for the dynamic characteristics of semiconductor memories are as follows:

Characteristic	Subscript
Access time	а
Disable time	dis
Enable time	en
Propagation time	р
Recovery time	rec
Transition time	t
Valid time	v

Note: Recovery time for use as a characteristic is limited to sense recovery time

4. SUBSCRIPTS B AND D (For Signal Name or Terminal Name)

The letter symbols for the signal name or the name of the terminal are as given below.

All subscripts B and D should be in upper-case.

Signal or terminal	Subscript
Address	Α
Clock	C
Column address	CA
Column address strobe	CAS
Data input	D
Data input/output	DQ
Chip enable	E

Erasure	ER
Output enable	G
Program	PR
Data output	Q
Read	R
Row address	RA
Row address strobe	RAS
Refresh	RF
Read/Write	RW
Chip select	S
Write (write enable)	W

- Note 1: In the letter symbols for time intervals, bars over the subscripts, for example CAS, should not be used.
 - 2: It should be noted, when further letter symbols are chosen, that the subscript should not end with H, K, V, X, or Z. (See clause 5)
 - 3: If the same terminal, or signal, can be used for two functions (for example Data input/output, Read/Write) the waveform should be labelled with the dual function, if appropriate, but the symbols for the dynamic parameters should include only that part of the subscript relevant to the parameter.

5. SUBSCRIPTS C AND E (For Transition of Signal)

The following symbols are used to represent the level or state of a signal:

Transition of signal	Subscript
High logic level	Н
Low logic level	L
Valid steady-state level (either low or high)	V
Unknown, changing, or 'don't care' level	1 X 1
High-impedance state of three-state output	Z

The direction of transition is expressed by two letters, the direction being from the state represented by the first letter to that represented by the second letter, with the letters being as given above.

When no misunderstanding can occur, the first letter may be omitted to give an abbreviated symbol for subscripts C and E as indicated below.

All subscripts C and E should be in upper-case.

Subscript

Examples	Full	Abbreviated
Transition from high level to low level	HL	L
Transition from low level to high level	LH	Н
Transition from unknown or changing state to valid state	xv	V
Transition from valid state to unknown or changing state	VX	X
Transition from high-impedance state to valid state	ZV	V

Note: Since subscripts C and E may be abbreviated, and since subscripts B and D may contain an indeterminate number of letters, it is necessary to put the restriction on the subscripts B and D that they should not end with H, L, V, X, or Z, so as to avoid possible confusion.

LETTER SYMBOLS FOR THE DYNAMIC PARAMETERS

6. SUBSCRIPT F (For Additional Information)

If necessary, subscript F is used to represent any additional qualification of the parameter such as mode of operation, test conditions, etc. The letter symbols for subscript F are given below.

Subscript F should be in upper-case.

Modes of operation	Subscript
Power-down	· PD
Page-mode read	PGR
Page-mode write	PGW
Read	R
Refresh	RF
Read-modify-write	RMW
Read-write	RW
Write	W

MITSUBISHI LSIS SYMBOLOGY

FOR DIGITAL INTEGRATED CIRCUITS

New symbol	Former symbol	Parameter—definition
0		Input appositance
D _i		Input capacitance
0		Output capacitance
Pi/o		Input/output terminal capacitance
Ο _i (φ)		Input capacitance of clock input
		Frequency
(φ)		Clock frequency
		Current—the current into an integrated circuit terminal is defined as a positive value and the current out of a terminal is defined as a negative value
ВВ		Supply current from V _{BB}
BB(AV)		Average supply current from V _{BB}
CC		Supply current from Vcc
CC(AV)		Avarage supply current from Vcc
CC(PD)		Power-down supply current from Vcc
DD		Supply current from V _{DD}
DD(AV)		Average supply current from V _{DD}
GG		Supply current from V _{GG}
GG(AV)		Average supply current from V _{GG}
1		Input current
IH.		High-level input current—the value of the input current when V_{OH} is applied to the input considered
IL		Low-level input current—the value of the input current when V_{OL} is applied to the input considered
он		High-level output current—the value of the output current when V _{OH} is applied to the output considered
OL		Low-level output current—the value of the output current when V _{OL} is applied to the output considered
loz		Off-state (high-impedance state) output current—the current into an output having a three-state capability with input condition so applied that
		it will establish according to the product specification, the off (high-impedance) state at the output
lozh		Off-state (high-impedance state) output current, with high-level voltage applied to the output
lozL		Off-state (high-impedance state) output current, with low-level voltage applied to the output
los		Short-circuit output current
Iss		Supply current from V _{SS}
Pd		Power dissipation
N _{EW}		Number of erase/write cycles
N _{RA}		Number of read access unrefreshed
Ri		Input resistance
RL		External load resistance
Roff		Off-state output resistance
Ron		On-state output resistance
ta		Access time—the time interval between the application of a specified input pulse during a read cycle and the availability of valid data signal at an output
ta(A)	ta(AD)	Address access time—the time interval between the application of an address input pulse and the availability of valid data signals at an output
ta(CAS)	4(40)	Column address strobe access time
t _{a(E)}	ta(CE)	Chip enable access time
t _{a(G)}	ta(OE)	Output enable access time
a(G)	- (/	Data access time after program
a(PA)		Row address strobe access time
t _{a(S)}	ta(cs)	Chip select access time
c (S)		Cycle time
CR	t _{c(RD)}	Read cycle time—the time interval between the start of a read cycle and the start of the next cycle
CR	t _{C(REF)}	Refresh cycle time—the time interval between successive signals that are intended to restore the level in a dynamic memory cell to its original level
topg	t _{C(PG)}	Page-mode cycle time
torg tormw		Read-modify-write cycle time—the time interval between teh start of a cycle in which the memory is read and new data is entered, and the start of
CHMW	t _{C(RMR)}	the next cycle

New symbol	Former symbol	Parameter—definition	
t _d		Dubus tirrus, the tirrus harburen the englified reference actions as the control of the control	
		Delay time—the time between the specified reference points on two pulses Pelay time between clock pulses—e.g. symbology delay time clock 1 to clock 2 to clock 2 to clock 1.	
t _{d(φ)}		Delay time between clock pulses—e.g., symbology, delay time, clock 1 to clock 2 or clock 2 to clock 1	
td(CAS-RAS)		Delay time, column address strobe to row address strobe	
td(CAS-W)	td(CAS-WR)	Delay time, column address strobe to write	
td(RAS-CAS)		Delay time, row address strobe to column address strobe	
^t d(RAS-W)	Id(RAS-WR)	Delay time, row address strobe to write	
tdis(R-Q)	tdis(R-DA)	Output disable time after read	
t _{dis(s)}	tpxz(cs)	Output disable time after chip select	
tdis(w)	t _{PXZ} (WR)	Output disable time after write	
tonL		High-level to low-level delay time the time interval between specified reference points on the input and on the output pulses, when the output to high-level delay time output is going to the low (high) level and when the device is driven and loaded by specified networks.	
t _{DLH}			
ten(A-Q)	t _{PZV(A-DQ)}	Output enable time after address	
ten(R-Q)	t _{PZV(R-DQ)}	Output enable time after read Output enable time after chip select	
ten(s-Q)	t _{PZX(CS-DQ)}		
t _f		Fall time	
th	+	Hold time—the interval time during which a signal at a specified input terminal after an active transition occurs at another specified input terminal	
t _{h(A)} t _{h(A-E)}	th(AD)	Address hold time Chip enable hold time after address	
1. ' '	th(AD-CE)	Program hold time after address	
th(A-PR)	th(AD-PRO)	Column address hold time after column address strobe	
th(CAS-CA)		Data-in hold time after column address strobe	
th(CAS-D)	th(CAS-DA)	Data-out hold time after column address strobe	
th(CAS-Q)	th(CAS-OUT)	Row address strobe hold time after column address strobe	
th(CAS-RAS)	th/0	Write hold time after column address strobe	
. `	th(CAS-WR)	Data-in hold time	
t _{h(D)} t _{h(D-PR)}	th(DA)	Program hold time after data-in	
	th(DA-PRO)	Chip enable hold time	
th(E)	th(CE)	Data-in hold time after chip enable	
t _{h(E-D)} t _{h(E-G)}	th(CE-DA)	Output enable hold time after chip enable	
th(E-G)	th(CE-OE)	Read hold time	
th(RAS-CA)	th(RD)	Column address hold time after row address strobe	
th(RAS-CAS)		Column address strobe hold time after row address strobe	
th (RAS-D)	th/neo nex	Data-in hold time after row address strobe	
th(RAS-W)	th(RAS-DA)	Write hold time after row address strobe	
th(RAS-W)	th(RAS-WR)	Chip select hold time	
t _{h(W)}	th(WR)	Write hold time	
1.	th(WR-CAS)	Column address strobe hold time after write	
t _{h(W-D)}	th(WR-DA)	Data-in hold time after write	
1	th(WR-RAS)	Row address hold time after write	
t _{PHL}	-11(WH-HAS)	High-level to low-level propagation time the time interval between specified reference points on the input and on the output pulses when the	
tpLH		Low-level to high-level propagation time output is going to the low (high) level and when the device is driven and loaded by typical devices of stated type	
tr		Rise time	
t _{rec(w)}	twr	Write recovery time—the time interval between the termination of a write pulse and the initiation of a new cycle	
t _{rec(PD)}	t _{R(PD)}	Power-down recovery time	
t _{su}	=/	Setup time—the time interval between the application of a signal which is maintained at a specified input terminal and a consecutive active	
-		tarnsition at another specified input terminal	
t _{su(A)}	t _{SU(AD)}	Address setup time	
t _{su(A-E)}	t _{su(AD-CE)}	Chip enable setup time before address	
t _{su(A-W)}	t _{su(AD-WR)}	Write setup time before address	
t _{SU(CA-RAS)}	Se (MD-MU)	Row address strobe setup time before column address	
SG (OM-TIMS)			

MITSUBISHI LSIS SYMBOLOGY

New symbol	Former symbol	Parameter—definition
t _{su(D)}	t _{SU(DA)}	Data-in setup time
t _{su(D-E)}	tsu(DA-CE)	Chip enable setup time before data-in
tsu(D-W)	t _{Su(DA-WR)}	Write setup time before data-in
t _{su(E)}	t _{Su(CE)}	Chip enable setup time
t _{su(E-P)}	t _{su(CE-P)}	Precharge setup time before chip enable
t _{Su(G-E)}	tsu(OE-CE)	Chip enable setup time before output enable
t _{su(P-E)}	Isu(P-CE)	Chip enable setup time before precharge
t _{SU(PD)}		Power-down setup time
t _{su(R)}	t _{su(RD)}	Read setup time
t _{su(R-CAS)}	tsu(RA-CAS)	Column address strobe setup time before read
tsu (RA-CAS)		Column address strobe setup time before row address
t _{su(s)}	t _{su(CS)}	Chip select setup time
t _{su(s-w)}	t _{su(CS-WR)}	Write setup time before chip select
t _{su(w)}	t _{su(WR)}	Write setup time
t _{THL}		High-level to low-level transition time the time interval between specified reference points on the edge of the output pulse when the output is going to the low (high) level and when a specified input signal is applied through a specified network and
t _{TLH}		Low-level- to high-level transition time the output is loaded by another specified network
t _{v(A)}	t _{dv(AD)}	Data valid time after address
t _{v(E)}	t _{dv(CE)}	Data valid time after chip enable
t _{v(E)PR}	t _{v(CE)PR}	Data valid time after chip enable in program mode
t _{v(G)}	t _{v(OE)}	Data valid time after output enable
t _{v (PR)}		Data valid time after program
t _{v(S)}	t _{v(CS)}	Data valid time after chip select
t _w		Pulse width (pulse duration) the time interval between specified reference points on the leading and training edges of the waveforms
t _{w(E)}	tw(CE)	Chip enable pulse width
t _{w(EH)}	tw(CEH)	Chip enable high pulse width
tw(EL)	tw(EL)	Chip enable low pulse width
t _{w(PR)}		Program pulse width
t _{w(R)}	tw(RD)	Read pulse width
t _{w(s)}	tw(cs)	Chip select pulse width
t _{w(w)}	t _{w(wR)}	Wrtie pulse width
$t_{W(\phi)}$		Clock pulse width
Та		Ambient temperature
Topr		Operating temperature
Tstg		Storage temperature
V _{BB}		V _{BB} supply voltage
Vcc		V _{CC} supply voltage
V_{DD}		V _{DD} supply voltage
V_{GG}		V _{GG} supply voltage
VI		Input voltage
V _{IH}		High-level input voltage—the value of the permitted high-state voltage at the input
VIL		Low-level input voltage—the value of the permitted low-state voltage at the input
Vo		Output voltage
V _{OH}		High-level output voltage—the value of the guaranteed high-state voltage range at the output
VoL		Low-level output voltage—the value of the guaranteed low-state voltage range at the output
Vss		V _{SS} supply voltage
-		
L	L	

RANDOM-ACCESS MEMORIES

4

M58725P, S; P-15, S-15

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

DESCRIPTION

This is a family of 2048-word by 8-bit static RAMs, fabricated with the N-channel silicon-gate MOS process and designed for simple interfacing. These devices operate on a single 5V supply, as does TTL, and are directly TTL-compatible.

The input and output terminals are common, and an $\overline{\text{OE}}$ terminal is provided. $\overline{\text{S}}$ controls the power-down feature

FEATURES

• Fast access time:

M58725P, S:

200ns (max) 150ns (max)

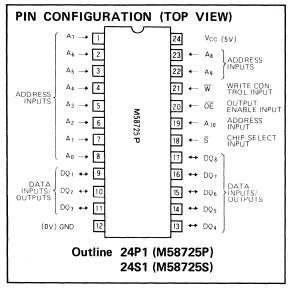
M58725 P-15, S-15:
• Low power dissipation:

250mW (typ)

Active: Stand by:

25mW (tvp)

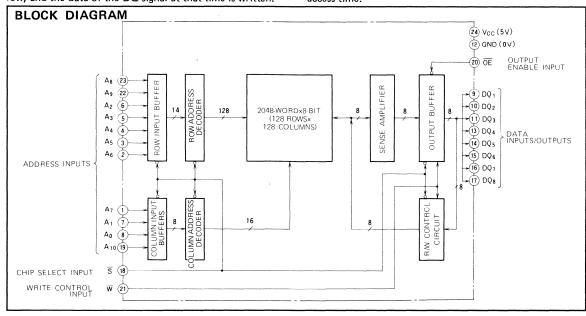
● Power down by S


- Prover down by 5
- Single 5V supply voltage (±10% tolerance)
- Requires neither external clock nor refreshing
- All inputs and outputs are directly TTL compatible
- All outputs are three-state, with OR-tie capability
- Easy memory expansion by chip-select (S) input
- Common data DQ terminals.
- Same pin configuration as M5L2716K 16 384-bit EPROM

APPLICATION

Small-capacity memory units

FUNCTION


These devices provide common data input and output terminals. During a write cycle, when a location is designated by address signals $A_0 \sim A_{10}$ the \overline{OE} signal is kept high to keep the DQ terminals in the input mode, signal \overline{W} goes low, and the data of the DQ signal at that time is written.

During a read cycle, when a location is designated by address signals $A_0 \sim A_{10}$ the \overline{OE} signal is kept low to keep the DQ terminals in the output mode, signal \overline{W} goes high, and the data of the designated address is available at the I/O terminals.

When signal \overline{S} is high, the chip is in the non-selectable state, disabling both reading and writing. In this case the output is in the floating (high-impedance) state, useful for OR-ties with other output terminals.

Signal \overline{S} controls the power down feature. When \overline{S} goes high power dissipation is reduced to 1/10 of active power. The access time from \overline{S} is equivalent to the address access time.

M58725P, S; P-15, S-15

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Test conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
Vı	Input voltage	With respect to GND	-0.5-7	V
Vo	Output voltage		-0.5∼7	V
Pd	Maximum power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air ambient temperature range		0~70	°C
Tstg	Storage temperature range		-65~150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted.)

			Unit		
Symbol	Symbol Parameter	Min	Nom	Max	Onit
Vcc	Supply voltage	4.5	5	5.5	V
VIL	Low-level input voltage	-0.5		0.8	V
VIH	High-level input voltage	2		6	V

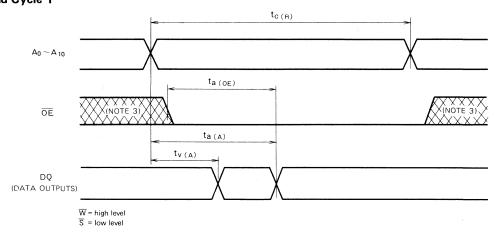
ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{OC} = 5V \pm 10\%$, unless otherwise noted.)

Symbol	2	Test conditions		Limits			Unit
Symbol	Parameter	lest condition	S	Min	Тур	Max	Onit
VIH	High-level input voltage			2		6	V
VIL	Low-level input voltage			-0.5		0.8	V
VoH	High-level output voltage	$I_{OH} = -1 \text{mA}, V_{CC} = 4.5 \text{V}$		2.4			, ° V
VoL	Low-level output voltage	I _{OL} = 3.2mA				0.4	V
11	Input current	$V_{J} = 0 \sim 5.5 V$				10	μА
lozh	Off-state high-level output current	$V_{I(\bar{S})} = 2V, V_0 = 2.4V - V_{CC}$				10	μΑ
lozL	Off-state low-level output current	$V_{I(\overline{S})} = 2V, V_0 = 0.4V$				-10	μА
		$V_1 = 5.5V, V_1(\overline{s}) = 0.8V,$	Ta = 25°C		50		mA
1001	Supply current from V _{CC}	outputs open	Ta = 0°C			90	mA
		$V_1 = 5.5V, V_1(\overline{s}) = 2V$	Ta=25°C		5	10	mA
1002	ICC2 Stand-by current	outputs open	Ta = 70°C		7	15	mA
Ci	Input capacitance, all inputs	V _I =GND, Vi=25mVrms, f=1MHz			3	5	pF
Co	Output capacitance	$V_0 = GND$, $V_0 = 25mVrms$, $f = 1MHz$.5	8	pF

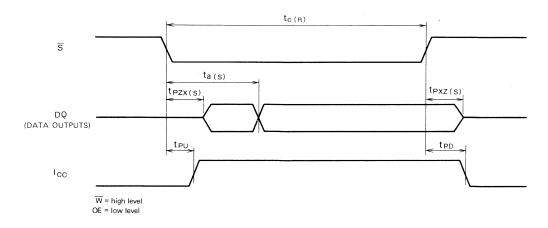
Note 1: Current flowing into an IC is positive, out is negative.

SWITCHING CHARACTERISTICS (For Read Cycle) ($Ta = 0 - 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

			M58725P-15, S-15			M58725P, S			
Symbol	Parameter		Limits			Limits			
		Min	Тур	Max	Min	Тур	Max		
tc (R)	Read cycle time	150			200			ns	
ta (A)	Address access time			150			200	ns	
ta(S)	Chip select access time			150			200	ns	
ta(OE)	Output enable access time			50			60	ns	
tv (A)	Data valid time after address	20			20			ns	
t _{PXZ(S)}	Output disable time after chip select			50			60	ns	
t _{PZX(S)}	Output active time after chip select	10			20			ns	
tpU	Power up time after chip selection	0			0			ns	
tpD	Power down time after chip deselection			60			80	ns	

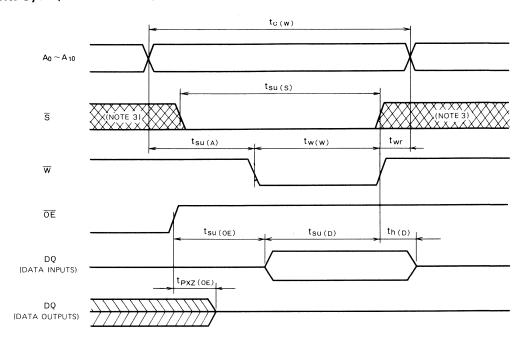


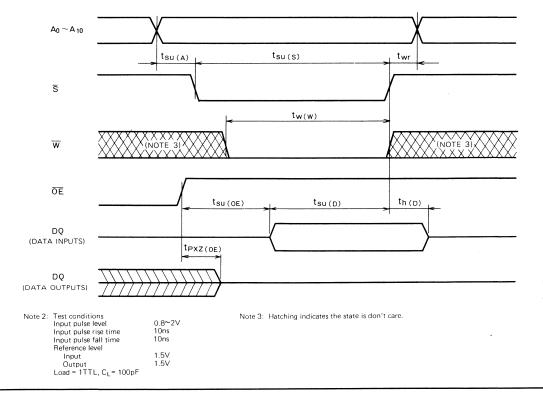
16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM


TIMING REQUIREMENTS (For Write Cycle) ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, unless otherwise noted.)

		M58725P-15, S-15		M58725P, S Limits			Unit	
Symbol	Parameter		Limits					
		Min	Тур	Max	Min	Тур	Max	
tc(W)	Write cycle time	150			200			ns
tsu(S)	Chip select setup time	100			120			ns
tsu(A)	Address setup time	20			20			ns
tw (w)	Write pulse width	80			100			ns
twr	Write recovery time	0			0			ns
tsu (OE)	Output enable setup time	40			40			ns
tsu (D)	Data setup time	60			60			ns
th (D)	Data hold time	10			10			ns
t _{PXZ(OE)}	Output disable time after output enable			40			40	ns
$t_{PXZ(W)}$	Output disable time after write enable			40			40	ns

TIMING DIAGRAMS (Note 2) Read Cycle 1


Read Cycle 2


M58725P, S; P-15, S-15

16 384-BIT (2048-WORD BY 8-BIT) STATIC RAM

Write Cycle (W Control Mode)

Write Cycle 2 (S Control Mode)

READ-ONLY MEMORIES

MITSUBISHI LSIS M5L 2732K, K-6

32 768-BIT(4096-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

DESCRIPTION

These are ultraviolet-light erasable and electrically reprogrammable 32 768-bit (4096-word by 8-bit) EPROMS. They incorporate N-channel silicon-gate MOS technology, and are designed for microprocessor programming applications.

FEATURES

● Fast programming: 200s/32 768 bits (typ)

•Access time M5L 2732K: 450ns (max)

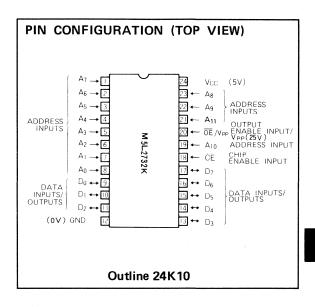
M5L 2732K-6: 550ns (max)

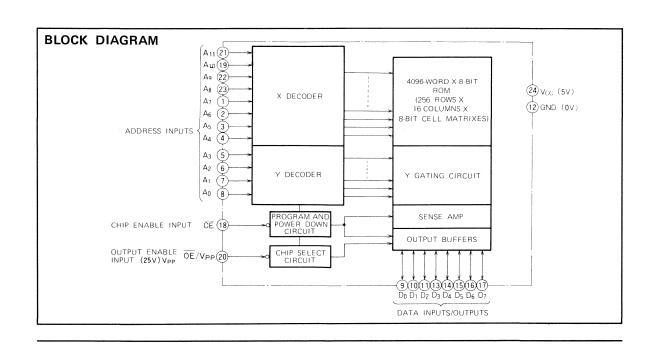
Static circuits are used throughout

Inputs and outputs TTL-compatible in read and program modes

Single 5V power supply for read mode
 (25V power supply required for program)

●Low power dissipation: Operating: 787mW (max)


Standby: 157mW (max)


 Single-location programming (requires one 50ms pulse/address)

●Interchangeable with Intel's 2732 in pin configuration

APPLICATION

Computers and peripheral equipment

M5L 2732K, K-6

32 768-BIT(4096-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

FUNCTION

Read

Set the $\overline{\text{CE}}$ and $\overline{\text{OE}}$ terminals to the read mode (low-level). Low-level input to $\overline{\text{CE}}$ and $\overline{\text{OE}}$ and address signals to the address inputs (A₀ \sim A₁₁) make the data contents of the designated address location available at the data inputs/outputs (D₀ \sim D₇). When the $\overline{\text{CE}}$ or $\overline{\text{OE}}$ signal is high, data inputs/outputs (D₀ \sim D₇) are in a floating state.

When the $\overline{\text{CE}}$ signal is high, the device is in the standby mode or power-down mode.

Programming

The chip enters the programming mode when 25V is supplied to the \overline{OE}/V_{PP} input. A location is designated by address signals $A_0 \sim A_{11}$, and the data to be programmed must be applied at 8 bits in parallel to the data inputs $D_0 \sim D_7$. A program pulse, an active low pulse, to the \overline{CE} at this state will effect the programming operation. Only one programming is required, but its width must satisfy the condition $45\text{ms} \leqq t_{W(CE)} \leqq 55\text{ms}$.

Frase

Erase is effected by exposure to ultraviolet light with a wavelength of 2537 \mathring{A} at an intensity of approximately 15Ws/cm².

Mode selection

Pin Mode	CE	0E/V _{PP}	Vcc	
Read	VIL	VIL	5	Output
Deselect	V _{IL} ~V _{IH}	VIH	5	Floating
Power down	VIH	VIL~VIL	5	Floating
Program	Pulsed Vin to VIL	25	5	Input
Program verify	VIL	VIL	5	Output
Program inhibit	ViH	25	5	Floating

HANDLING PRECAUTIONS

- Sunlight and fluorescent light may contain ultraviolet light sufficient to erase the programmed information.
 For any operation in the read mode, the transparent window should be covered with opaque tape.
- 2. High voltages are used when programming, and the conditions under which is it performed must be carefully controlled to prevent the application of excessively high voltages. Specifically, the voltage applied to V_{PP} should be kept below 26V including overshoot. Special precautions should be taken at the time of power-on.
- Before erasing, clean the surface of the transparent lid to remove completely oily impurities or paste, which may impede irradiation and affect the erasing characteristics.

(Unit: V)

MITSUBISHI LSIS M5L 2732K, K-6

32 768-BIT(4096-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

ABSOLUTE MAXIMUM RATING

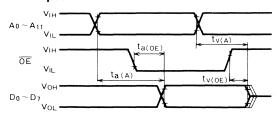
Symbol	Parameter	Conditions	Limits	Unit
V _{I1}	Input voltage, OE/Vpp input	With respect to GND	-0.3-26.5	V
V ₁₂	Input voltage, VCC, address, CE, data inputs	With respect to GND	-0.3-6	V
Topr	Operating free air temperature range		0 ~ 70	°C
Tstg	Storage temperature range		− 65 − 125	°C

READ OPERATION

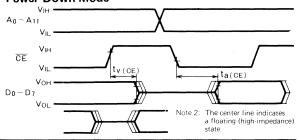
Recommended Operating Conditions (Ta = 0 ~ 70 °C. unless otherwise noted)

Symbol	D		Unit			
Symbol	Parameter	Min	Nom	Max	Omi	
Vcc	Supply voltage	4.75	5	5.25	V	
GND	Supply voltage		0		V	
VIL	Low-level input voltage	-0.1		0.8	V	
VIH	High-level input voltage	2.2		Voc+1	V	

Electrical Characteristics ($Ta=0 \sim 70\,^{\circ}\text{C}$, $V_{CC}=5V\pm5\%$, unless otherwise noted.)


C 1	Parameter ·	T- x - tu	Limits			Unit
Symbol		Test conditions	Min	Typ (Note 1)	Max	Offic
l _{1L1}	High-level input current. address, OE input	V _I = 5.25V			10	μА
I _{IL2}	High-level input current, \overline{OE}/V_{PP} input	V _I =4.75V			10	μΑ
loz	Off-state output current	$V_0 = 5.25V$, $\overline{OE} = 5 V$			10	μΑ
loc1	Supply current from V _{CC} (standby)	$\overline{\text{CE}} = \text{V}_{\text{IH}}, \ \overline{\text{OE}} = \text{V}_{\text{IL}}$		15	30	mΑ
1002	Supply current from V _{CC} (operating)	$\overline{OE} = \overline{CE} = V_{IL}$		85	150	mΑ
VoL	Low-level output voltage	I _{OL} = 2.1mA			0.45	V
Voн	High-level output voltage	$I_{OH} = -400\mu A$	2.4			V

Switching Characteristics ($Ta=0.70\,^{\circ}\text{C}$, $V_{CC}=5\,\text{V}\pm5\,\%$, unless otherwise noted.)


C1	Parameter		Test conditions		Limits			i lais	
Symbol	Parame	ter	lest condit	rest conditions			Max	Unit	
•	Address access time	M5L 2732K	OE = CE = VIL	tr≦20ns			450	ns	
ta(A)	Address access time	M5L 2732K 6	OE OE VIL	tr≦20ns tr≨20ns			550	ns	
	Chi-	M5L 2732K	- ŌĒ = V _{IL}	V _{II} = 0.8V			450	ns	
ta(CE)	Chip enable access time	M5L 2732K - 6		V _{IH} = 2.2V			550	ns	
	0	M5L 2732K	CE = VIL	Load:		100	150	ns	
ta(OE)	Output enable access time	M5L 2732K - 6	GE - VIL	100pF+1TTL			200	ns	
tv(OE)	Data valid time after output	enable	ŌĒ = VIL	,	0		100	ns	
tv(GE)	Data valid time after chip sele	ect	CE - VIL		0		100	ns	
tv(A)	Data valid time after address		OE = CE = VIL		0			ns	

Note 1: at Ta = 25°C and normal supply voltage.

TIMING DIAGRAMS (Read Operation) When power-Down Mode Not Used

Power-Down Mode

M5L 2732K, K-6

32 768-BIT(4096-WORD BY 8-BIT) ERASABLE AND ELECTRICALLY REPROGRAMMABLE ROM

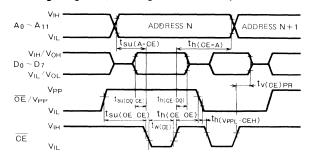
PROGRAM MODE

Recommended Operating Conditions (Ta = 25 ± 5 °C, unless otherwise noted.)

Symbol	Parameter		Unit		
3ymbor	Parameter	Min	Nom	Max	Onit
Vcc	Supply voltage	4.75	- 5	5.25	V
Vpp	Supply voltage	24	25	26	· V
GNG	Supply voltage		0		V
VIL	Low-level input voltage	0.1		0.8	V
V _{IH}	High-level input voltage	2.2		Vcc + 1	V

Electrical Characteristics ($Ta = 25 \pm 5$ °C. $V_{CC} = 5$ V ± 5 %. $V_{PP} = 25 \pm 1$ V. unless otherwise noted.)

Symbol			Limits			Unit
Symbol	Parameter	Test conditions	Min	Тур	Max	Oiiit
lıL	High-level input current, address, $\overline{\text{CE}}$ inputs	V _{IN} = 5.25V			10	μΑ
IPP	Supply current from V _{PP}	$\overline{\text{OE}} = V_{\text{IL}}$		-	30	mΑ
loc	Supply current from V _{CC}				150	mΑ


Timing Requirements (Ta = 25 ± 5 °C. $V_{CC} = 5 V \pm 5 \%$. $V_{PP} = 25 \pm 1 V$. unless otherwise noted.)

				Unit		
Symbol	Parameter	Test conditions	Min	Тур	Max	Oint
tsu(A CE)	Address setup time before chip enable		2			μS
tsu(OE CE)	Output enable setup time before chip enable		2			μS
tsu(DQ CE)	Data input setup time before chip enable	-	2		*	μS
th(ce A)	Address hold time after chip enable		2			μS
th(ce oe)	Output enable hold time after chip enable		2			μS
th(CE DQ)	Data input hold time after chip enable		2			μS
th _(VppL-CEH)	Chip enable high hold time after V _{PP} low		2			μS
tw(CE)	Chip enable pulse width		45	50	55	ms

Switching Characteristics Ta = 25 \pm 5 °C, V_{CC} = 5 V \pm 5 %, V_{PP} = 25 \pm 1 V, unless otherwise noted.)

Symbol	Davis	Test conditions		Unit		
	Parameter	rest conditions	Min	Тур	Max	Onit
tv(CE)PR	Data valid time after chip enable in program mode		0		120	ns

Timing Diagram (for Program and Verify)

6

MITSUBISHI MICROCOMPUTERS M58496-XXXP

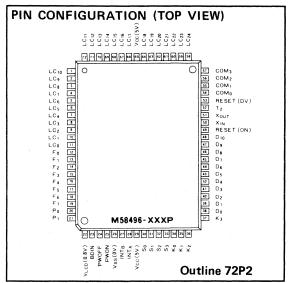
SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

DESCRIPTION

The M58496-XXXP is a single-chip 4-bit microcomputer fabricated using CMOS technology. Its features are liquid crystal display direct drive circuit, current saving circuit for back-up of a 22-stage frequency divider and RAM.

This device is designed for applications in which clock and liquid crystal display functions are included and where the low-power dissipation achieved by CMOS is especially important.

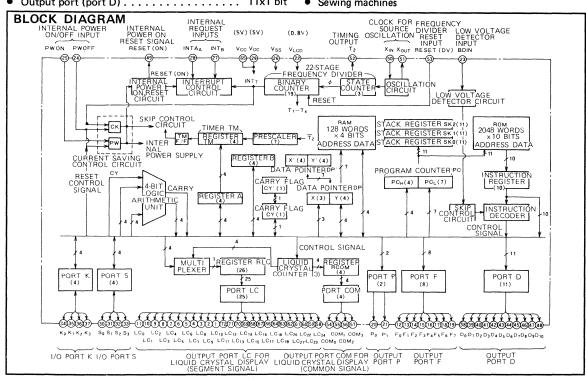
FEATURES


- Single 5V power supply
- Basic instruction execution time (at 4.2Mhz) 7.7μ s
- 2048 words x 10 bits Memory capacity: ROM: 128 words x 4 bits Internal RAM:

External RAM: 256 words x 4 bits

- Internal crystal oscillation circuit
- Internal 22-stage frequency divider
- Low voltage detector circuit
- Internal current saving circuit while idling
- Internal timer: Prescaler: 7 bits Timer: 4 bits

Output ports for liquid crystal display


- segment signal (port LC): 25 bits common signal (port COM): 4 bits
- I/O Ports (ports K and S) 2x4 bits

- Input port (port F) 8x1 bit Output port (port P) 2x1 bit
- Interrupt function 4 factors, 1 level

APPLICATIONS

- Electronic cash registers and calculators with printer
- Office machines, intelligent terminals and data terminals
- **Electronic Games**
- Electronic coin and changer machines
- Sewing machines

M58496-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

FUNCTION

The M58496-XXXP consists of mask ROM and RAM, a 4-bit arithmetic logic unit, crystal oscillation circuit, 22-stage frequency divider, power saving circuit, low voltage detector circuit, 4-bit timer, interrupt circuit and a liquid crystal display direct drive circuit. The RAM capacity can easily be expanded by the external connection of 256-word by 4-bit CMOS RAM.

The ROM storage is organized as 16 pages of 128 words which is used mainly for programs. Addressing the ROM is done through the program counter. The address register is structured as a 7-bit address register and a 4-bit page register. The address register is counted up as nonbranching instructions are executed. When a nonbranching instruction at address 127 on a page is executed an overflow of the address register is produced. This carry (overflow) is disregarded so the page register is not counted up and the next instruction to be executed will come from address 0 on the same page.

The return addresses for subroutines and interrupts are saved in one of the 11-bit stack registers. The stack consists of 3 stack registers (SK2, SK1, SK0) and when interrupts are expected 1 level should be reserved for interrupt processing. When an interrupt request is accepted control is transferred to fixed addresses as follows: in case of an internal power on reset signal (RESET (ON)) the program is set to page 0 address 0, for the INT_A signal it is set to page 0 address 2, for the INT_B signal it is set to page 0 address 4 and for the output signal INT_T (second signal) of the 22-stage frequency divider it is set to page 0 address 8.

The internal RAM which is configured as 8 files of 16 words is used for data storage and each word can be addressed. The internal RAM is addressed by a 7-bit data

pointer. The internal RAM can be augmented by external RAM consisting of up to 16 files of 16 words. The external RAM is addressed by the 8-bit combined register Y (4 bits) and register B (4 bits).

RAM addressing, register-to-register transfers, RAM-to-accumulator transfers, arithmetic operations, input/output operations and timer operation are performed mainly through register A (accumulator).

The current saving circuit used in conjunction with the 22-stage frequency divider and RAM can be controlled by the PWOFF input and instruction.

The low voltage detector circuit is also active while the power source is a battery. Low voltage is sensed by the program and an indication can be output.

The output ports for direct drive of the liquid crystal display are port LC (25 terminals) and port COM (4 terminals). The liquid crystal display can be driven by 1/4 duty, 1/3 bias or 1/3 duty, 1/3 bias.

Output port D consists of 11 individually latched bits that can be used to output not only 1-bit data but can also output data such as the contents of register Y of the data pointer and 8-bit addresses for external RAM.

Output port F consists of 8 individually latched bits that can be used to output data. It can be set or reset by instructions.

Output port P consists of 2 terminals through which a synchronous signal of 1 machine cycle width can be output by instruction.

The combined 7-bit output of ports F and P can be used to directly fetch the contents of ROM addressed by the data field of an instruction.

The I/O ports K and S consist of 4 terminals through which data can be transferred to and from register A.

PERFORMANCE SPECIFICATIONS

	Item		Performance
Number of basic instruct	ions		77
Execution time of basic i	instructions		7.7μs (V _{CC} =5V, f=4.1943MHz)
Clock frequency			250~525kHz
	ROM		2048 words x 10 bits
Memory Capacity	Internal	RAM	128 words x 4 bits
	External	RAM	256 words x 4 bits
	LC	Liquid crystal	25 x 1 bit (Note 1)
	COM	display output	4 terminals x 4 bits
	· K	Input	4 bits
	K	Output	4 bits (Note 2)
I/O Port	S	Input	4 bits
	5	Output	4 bits (Note 2)
	D	Output	11x 1 bit (open drain)
	F	Output	8 x 1 bit (Note 2)
1	Р	Output	2 x 1 bit (Note 2)
Frequency divider			22-stage built in
Current saving circuit			Built in
Low voltage detector			Built in
Subroutine nesting			3 levels (including 1 level of interrupt)
Interrupt request			4 factors, 1 level
Clock generation circuit			Built in (4.1943 MHz crystal oscillator external)
Input/output port	Output v	oltage	6V (max)
input/output port	Output o	urrent	-0.5 mA (max)
Power supply voltage:	Vcc		5V (nom)
rower supply voltage.	V _{SS}		0V
Liquid crystal display dri	iving supply v	oltage	0.8V (nom)
Element structure			CMOS
Package			72-pin plastic molded flat package
Power dissipation	In opera	tion	5mW (V _{CC} =5V, 525 kHz)
(open output terminals)	In idle		1.5mW (V _{CC} =5V, 525 kHz)

Note 1: Port LC can be extended to a maximum of 26 bits, but other ports are eliminated.

Ports K, S, F, and P are connected to high-impedance pull-down resistors.
 When high driving current is required, external resistors are required.

M158496-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or output	At reset (internal power-on)	Function
X _{IN}	Source oscillation clock input	Input	<u></u>	Incorporates the clock oscillation circuit, for setting the frequency. An oscillation reference device such as a crystal oscillator is connected between X_{IN} and X_{OUT} .
Хоит	Source oscillation clock output	Output	<u> </u>	When an external clock is used, connect the clock oscillation source to the X_{IN} pin and leave the X_{OUT} pin open.
PWON	Internal power on input	Input	_	Incorporates the power saving circuit. Its control inputs are PWON and PWOFF. The 22-stage frequency divider and RAM are put in the idle state by a PWOFF
PWOFF	Internal power off input	Input		input.
RESET (DV)	Frequency divider reset input	Input		Incorporates the 22-stage frequency divider as the crystal oscillation reference device. This is a reset input for the frequency divider.
BDIN	Low voltage detector input	Input		The low voltage detector circuit is built in. A resistor should be connected to the BDIN pin for voltage sensing.
INTA	Interrupt request A signal	Input	Interrupt disable	This input signal is for an interrupt request. The request is accepted on the rising
INTB	Interrupt request B signal	Input	Interrupt disable	edge of the signal. Besides these external input signals, an interrupt request INT _T from the 22-stage frequency divider output signal is sensed as an interrupt.
LC0~LC24	Liquid crystal display segment output	Output		Incorporates the liquid crystal display direct drive circuit. It is suitable for liquid crystal display at 1/4 duty and 1/3 bias.
COM ₀ ~COM ₃	Liquid crystal display common output	Output	_	The output ports for direct drive of the liquid crystal display are port LC (LC $_0$ ~ LC $_{24}$) and port COM (COM $_0$ ~COM $_3$).
VLCD	Power supply for liquid crystal display			This is the power supply terminal for a liquid crystal display. It includes the bias resistor for the segment and common signals.
D ₀ ~ D ₁₀	Output port D	Output		This output port consists of 11 bits. Each output is individually latched and can be selected to be set or reset by the contents of register Y. Also 8 bits of the port can be used to fetch 8-bit addresses for external RAM.
F ₀ ~F ₇	Output port F	Output	Low level	The output port consists of 8 bits. Each output is individually latched and can be set or reset by instructions.
P ₀ , P ₁	Output port P	Output	Low level	This output port consists of 2 bits from which 1 synchronous signal of 1 machine cycle width can be output per instruction. The immediate 7-bit field of an instruction can be output through this port in combination with 5 bits of port F.
K ₀ - K ₃	Input/output port K	Input/output	Low level	Ports K and S are 4-bit latched input/output ports through which data can be
S ₀ - S ₃	Input/output S	Input/output	Low level	transferred to and from register A. When output is low-level the output will be high-impedance so it can be used as an input port.
T ₂	Timing output	Output		The timing output is used for testing the device.
RESET(ON)	Internal power-on reset signal	Output	High level	When the internal power supply is switched on, a built in automatic reset circuit generates a high-level reset signal that resets the I/O ports.

M58496-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

OPERATIONS

Program Counter PC

The program counter is an 11-bit address register. The high-order 4 bits designate the page number and as a group are called PCH. The low-order 7 bits designate the address on the page and as a group are called PCL. The PC designates the address of the 2048 words by 10-bit mask-programmable ROM. The ROM is organized into 16 pages of 128 words. As instructions are fetched from ROM, PCL is incremented so that unless there is a branch executed instructions are fetched and executed in sequence. Care must be taken when the last instruction on a page (address 127) is executed because when PCL is incremented it becomes zero with a carry, but the carry is disregarded so the next instruction to be fetched will be the start of the same page. Therefore to move to the next page PCH must modified by using branch instructions such as BL, BML, BLA and BMLA.

Pages 14 and 15 are special pages designed to accommodate subroutines. Subroutines starting on page 14 can be called by 1-word instructions BM or BMA. These instructions automatically load PC_H to designate page 14 and in addition the return address and control status are saved so they can be restored when the subroutine transfers control back to the main program. If the instructions BM or BMA are executed on page 14, they execute a branch within page 14 without saving any information. If the instructions B or BA are executed on page 14, they execute a branch to page 15.

Stack Registers SK0, SK1, SK2

The 3-level stack register consists of 11-bit registers for storing the contents of the program counter when control is transferred from the main program to a subroutine or interrupt. When control is transferred back to the main program, the PC can be restored. There are 3 levels, but when 1 level is saved for interrupts it leaves 2 levels for subroutine nesting.

Data Pointers DP, DP'

The data pointer is a 7-bit register used to designate the address of RAM or the bit position of output port D. The data pointer is composed of the 3-bit register X and the 4-bit register Y. Internal RAM is organized as 8 files of 16 words. Register X designates the file and register Y designates the word position of a file or the bit position of output port D.

The data pointer DP' is selected by software during interrupt processing to leave the contents of DP unchanged (saves the DP).

External RAM is organized as 16 files of 16 words that can be added to the system to expand memory. Register Y designates the word position of a file while register B designates the file.

Register A (accumulator) and Carry Flags CY, CY'

Register A is the 4-bit accumulator forming the heart of the 4-bit microcomputer. Data processing operations such as arithmetic, transfer, exchange, conversion, and input/ output are executed principally through this register.

The carry flags are to store the carry or borrow from the most significant bit of the arithmetic unit resulting from executing the various instructions. It can be tested and used for various purposes. In principle it acts as a 1bit flag.

The carry flag CY is selected by software to leave the contents of CY unchanged (saves the CY).

Register B (Auxiliary Register)

Register B is a 4-bit register used for temporary storage of 4-bit data. It also is used to designate the file number of external RAM.

Arithmetic Logic Unit (ALU)

The arithmetic logic unit performs 4-bit arithmetic and logical operations. The heart of the ALU is a 4-bit adder and the logic circuit associated with it. It performs operations such as additions, complement conversions, logic arithmetic comparisons and bit processing.

Frequency Divider and Timer

The frequency divider divides the basic oscillation frequency into 22 stages. It is connected to the basic oscillation device through X_{IN} and X_{OUT} . The frequency divider generates the interrupt request signal INT_T to the interrupt control circuit. The frequency divider sets flag CK for controlling the power saving circuit.

Basic oscillation for the timer is the timing signal T_2 . The timer is composed of a 7-bit prescaler and a 4-bit counter. Timer flag TMF/F is set when a timer overflows, and is sensed by the TTM instruction. The 4-bit timer counter is set by the STM instruction. Prescaler and timer flag are reset at the same time.

Power Saving Circuit

The power saving circuit is controlled by the CK flag and PW. Its output is input to the internal power supply reset circuit and generates an interrupt request signal RESET (ON). Control is transferred unconditionally to address 0 on page 0 and resets the I/O ports. The interrupt request

signal RESET (ON) generates on the rising edge of internal power supply on reset output. Internal power supply is switched off by the external terminal and stop instruction, but power is maintained to the following circuits:

- 1. Internal data memory (RAM)
- 2. Clock oscillation circuit
- 3. 22-stage frequency divider
- 4. Low voltage detector circuit
- 5. Power saving circuit

Low Voltage Detector Circuit

The low voltage detector circuit connects the resistor for sensing voltage to the BDIN terminal. A falling voltage level is sensed by the program and can be displayed by using apt output port.

Interrupt Functions

The M58496-XXXP has internal circuits to process interrupt requests from 4 single level sources. The 4 interrupt request sources are external interrupt signals INT_A and INT_B, internal power supply reset output RESET (ON), output INT_T from the 22-stage frequency divider. Interrupt requests INT_A, INT_B and INT_T are enabled by the instructions EIA, EIB and EIT respectively and disabled by the instruction DIA, DIB and DIT respectively. Interrupt requests from the internal power supply through reset output RESET (ON) cannot be disabled and will cause an interrupt whenever received.

During the interrupt enable state an interrupt request by INT_A or INT_B is accepted on the rising edge of the signal. When an interrupt request is received during the interrupt disable state it is latched, but is not executed. When the disable is removed thereafter by executing the corresponding interrupt enable instruction, the interrupt request will be accepted immediately and control transferred to the interrupt routine because the request was latched. A current interrupt request, held by latching during interrupt disable state is reset when the corresponding interrupt disable instruction is executed.

One level of the 3-level stack register is required when interrupt programs are used. This leaves 2 levels available for subroutine processing. After an interrupt is processed control is returned to the main program by executing a return instruction such as RTI. Care must be taken after starting an interrupt program to save the contents the data pointer DP, register A, carry flag and any other registers used, so the contents can be restored before returning to the main program. The contents must be saved and restored by the interrupt program.

When an interrupt request is accepted the program counter, interrupt enable flag and skip flag are affected as follows:

(1) Program counter

The contents (the current program address) are stored in the stack register. Control is transferred to address 0 on page 0 by a RESET (ON) interrupt, to address 2 on page 0 by an INT_A interrupt, to address 4 on page by an INT_B interrupt or to address 8 on page 0 by an INT_T interrupt by setting the control counter to 00, 02, 04 or 08 respectively. When control is transferred to address 0 page 0, the instruction is invalid and is not executed, so the first instruction is executed from address 1 on page 0.

(2) Interrupt enable flags

When an interrupt request is accepted additional interrupts are disabled until the accepted interrupt is processed. Except that a RESET (ON) interrupt may be accepted at any time.

(3) Skip flags

The skip flags are used to indicate an instruction skip and the NOP state for instructions LXY and LA are saved. A special stack is provided for saving these flags.

General-Purpose I/O ports K, S, F, P and D

These 4-bit or 1-bit general-purpose registers are used for such things as data transfer between register A, instruction transfers, 1-bit transfers as selected by register Y, storing 7-bit immediate field data of instructions fetched from ROM, and data transfers between external RAM. Each output has a latch and its output circuit contains an open drain resistor or a pulldown resistor (high-impedance).

I/O ports K, S

Ports K and S are 4-bit latched I/O ports, that can transfer data to and from register A. Output latches are reset by the DIKS instruction when the port is being used as an input port.

Output port F

Port F is an 8-bit latched output port, that has independent latches for each bit. The individual bits can be set by the SF instruction and reset by the RF instruction.

Output port P

Port P is a 2-bit latched output port, that is usually in low-level, but can output the machine cycle high-level synchronous signal by SP_0 or SP_1 instructions. The 7 bits ($F_4 \sim F_0$, P_1 , P_0) can be used for direct fetching of the immediate field of the OTRO instruction.

Output port D

Port D is an 11-bit latched output port, that has independent latches for each bit. The contents for register Y indicate the individual bit to be set by the SD instruction or to be reset by the RD instruction. The 8-bit address of external memory (RAM) is output through this port.

Liquid Crystal Display Drive Circuit

The liquid crystal display direct drive circuit is composed of the following units. A block diagram of the units is shown in Fig. 1.

1 Control counter for the liquid crystal display This is an octal counter composed of 3 bits and is counted down by the ELC instruction. The contents of the counter select 1 bit of register A and transfer data in order to the segment register RLC by the TLC instruction and determines the frame frequency for the liquid crystal display by transferring the contents

of the counter to common register RCOM.

2 Register A

This 4-bit register is the accumulator. Its function is to control data processing, arithmetic operations control functions and input/output of the microcomputer.

3 Segment register RLC

The 26-bit segment register stores selected 1-bit data from register A by execution of the TLC instruction.

It shifts 1 bit in order and stores the segment signals for the liquid crystal display device.

4 Common register RCOM

The 4-bit common register stores the common signal for the liquid crystal display. The input for the common register is the converted contents of the control counter for the liquid crystal display.

5 Port LC

The 26-bit latched port LC stores data in parallel by the ELC or DLC instruction from the segment register RLC. A bias resistor provides for the output at 2 levels and the 25 low-order bits are output as standard type. The high-order bit is not output to an external terminal.

6 Port COM

Port COM has 4 bits of latched storage. The data is transferred in parallel by the ELC or DLC instruction through the common register (RCOM). The outputs of this port have 3 biased levels by means of bias resistors,

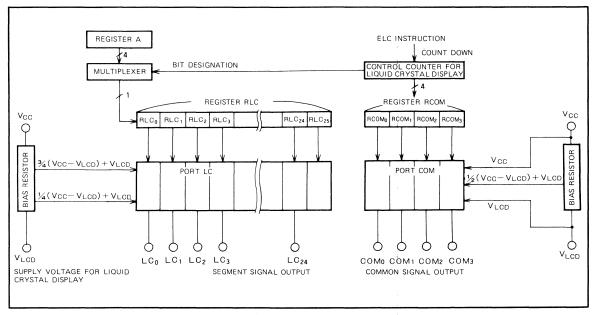


Fig. 1 Liquid crystal display drive circuit block diagram

BASIC TIMING CHART

	chine cycle				
Signal name Signal s	ymbol State	Т1	T ₂	Т3	T ₄
Clock signal (Note 3)	ø				
Timing output	T ₂			L	
Port D output	D ₀ ~ D ₁₀		×		
Port F output	F ₀ ~F ₇		<		
Port P output	P ₀ ,P ₁				
Port K output	K ₀ - K ₃				
Port K input	K ₀ ~ K ₃	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
Port S output	$S_0 \sim S_3$				
Port S input	S ₀ S ₃	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			
Interrupt request input	INTA-INTB			XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

Note 3: Internal clock signal which is 1/8 of basic oscillation frequency.

4: indicates an invalid signal input.

INSTRUCTION FETCH TIMING

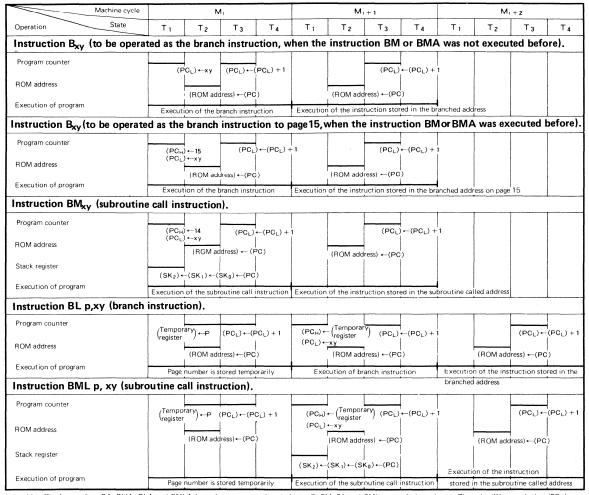
Machine cycle		. N	1i			Mi	+ 1		Mi +2			
Instruction cycle State	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	Т3	T ₄	T ₁	T ₂	T ₃	T ₄
Instruction fetch						(Note 5)						
Instruction execution								(Note 6)				

Note 5: Instruction fetch time can differ depending on the types of the instructions.

6: The instruction which was fetched in the preceding cycle is executed.

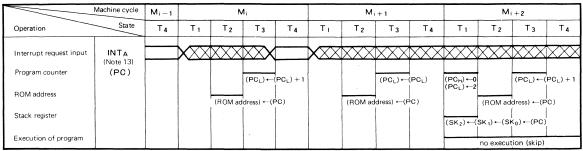
7: The execution of the instruction and addressing of ROM and RAM are performed simultaneously.

I/O INSTRUCTION EXECUTION TIMING


	Machine cycle:		N	1i			. N	1i + 1		Mi +2			
Signal name	State State	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄	T ₁	T ₂	T ₃	T ₄
Port D output	$D_0 \sim D_{10}$		\times										
Port F output	F ₀ ~F ₇		\times										
Port P output	Po . P1		/	-			\			(Note 8)			
Port K output	K ₀ ~ K ₃		\times										
Port K input	K ₀ ~ K ₃			$\times\!\!\times\!\!\times$	$\times\!\!\times\!\!\times$		XXX	XXXX	XXXX	XXX		$\times\!\times\!\times$	
Port S output	S ₀ ~ S ₃		\times										
Port S input	S ₀ ~ S ₃	$\times\!\!\times\!\!\times$						XXXX		XXXX	XXXX		
Port LC output	$LC_0 \sim LC_{20}$		\times	(Note 9)				· · · · · · · · · · · · · · · · · · ·					
Port COM output	COM ₀ ~COM ₃			(Note 10	1)								

Note 8: When an OTRO instruction is executed, the output is latched.

9: Output voltage of port LC depends upon power supply V_{LCD} for the liquid crystal display.


10: Output voltage of port COM has 3 levels depending on the power supply V_{LCD} for the liquid crystal display.

BRANCH AND SUBROUTINE CALL INSTRUCTION EXECUTION TIMING

Note 11: The instructions BA, BMA, BLA and BMLA have the same execution timing as B, BM, BL and BML respectively as shown. The only difference is that $(PC_L) \leftarrow xy$ is replaced by $(PC_L) \leftarrow x(A)$.

INTERRUPT EXECUTION TIMING

Note 12: When the instruction executed in the machine cycle Mi+1 is a BL, BML, BLA or BMLA, the value of address 2 of page 0 is stored in the program counter during Mi+3.

^{13:} The interrupt request input INT_B has the same execution timing as INT_A. If the input is low level in the machine cycle M_{i-1} and high level in the machine cycle M_i, the interrupt is executed during the interrupt enable state.

INSTRUCTION CODE LIST

D9~	D4	Ī		Ī.						Γ				Γ -		00 1110	01 0000	01 1000	10 0000	10 1000	11 0000	11 1000
TE A		00 0000	00 0001	00 0010	00 0011	00 0100	00 0101	00 0110	00 0111	00 1000	00 1001	06 1010	00 1011	00 1100	00 1101	00 1111	01 0111	01 1111	10 0111	10 1111	11 0111	ս հա
Dg ~ The tackets Dg Dg	100	0 0	0 1	0 2	0 3	0 4	0 5	0 6	0 7	0 8	0 9	0 A	0 B	0 C	0 D	0E ~ 0F	10 ~ 17	18 ~ 1F	20 - 27	28 ~ 2F	30 ~ 37	38 - 3F
0000	0	NOP	TLC	INY	SZB 0	SEY 0	SEI 0	SF 0	BL BLA BML BMLA		RAR	TAM 0	XAMD 0	. А О	LA ·		OTRO	LXY	вм	ВМА	В	ВА
0001	1	scoм	DIKS	DEY	SZB 1	SEY 1	SEI 1	SF 1	BL BLA BML BMLA		- Maries	TAM 1	XAMD 1	A 1	LA 1	_	OTRO	LXY	вм	ВМА	В	Вд
0010	2	EIA	SFK	XDP	SZB 2	SEY 2	SEI 2	SF 2	BL BLA BML BMLA	*	ΙK	TAM 2	XAMD 2	A 2	LA 2	-	OTRO	LXY	вм	ВМА	В	ВА
0011	3	DIA	SFS	TYA	SZB 3	SEY 3	SEI 3	SF 3	BL BLA BML BMLA	SEAM	IS	TAM 3	XAMD 3	Д	LA 3		ОТЯО	LXY	вм	ВМА	В	ВА
0100	4	EIB	*	sc	RT	SEY 4	SEI 4	SF 4	BL BLA BML BMLA	72. *	ТВА	TAM 4	XAMD 4	A 4	LA 4	-	OTRO	LXY	вм	вма	В	ВА
0101	5	DIB	DLC	RC	RTS	SEY 5	SEI 5	SF 5	BL BLA BML BMLA	TAY		TAM 5	XAMD 5	A 5	LA 5	-	OTRO	LXY	вм	ВМА	В	ВА
0110	6	DETS	*	хc	RTI	SEY 6	SEI 6	SF 6	BL BLA BML BMLA	AND	XAB	TAM 6	XAMD	A 6	LA 6	-	OTRO	LXY	вм	ВМА	В	ВА
0111	7	DETR	ELC	*	*	SEY 7	SEI 7	SF 7	BL BLA BML BMLA	EXL	ТАВ	TAM 7	XAMD 7	A 7	LA 7	_	OTRO	LXY	вм	ВМА	В	ВА
1000	8	EIT	SP0	*	*	SEY 8	SEI 8	RF 0	BL BLA BML BMLA	*	SB 0	XAM 0	XAMI 0	A 8	LA 8	-	OTRO	LXY	вм	ВМА	В	ВА
1001	9	DIT	* .	SD	*	SEY 9	SEI 9	RF 1	BL BLA BML BMLA	СМА	SB 1	XAM 1	XAMI 1	A 9	LA 9	-	отво	LXY	вм	ВМА	В	ВА
1010	А	STM	SP 1	*	*	SEY 10	SEI 10	RF 2	BL BLA BML BMLA	АМ	SB 2	XAM 2	XAMi 2	A 10	LA 10	-	отво	LXY	вм	ВМА	В	ВА
1011	В	POF2	*	*	*	SEY 11	SEI 11	RF 3	BL BLA BML BMLA	*	SB 3	3 XAM	3 X A M I	A 11	LA 11		отво	LXY	вм	вма	В	ВА
1100	С	POF 1	OTAD	*	*	SEY 12	SEI 12	RF 4	BL BLA BML BMLA	*	RB 0	XAM 4	XAMI 4	A 12	L A 12	-	OTRO	LXY	Вм	вма	В	ВА
1101	D	SDET	*	RD	*	SEY 13	SEI 13	RF 5	BL BLA BML BMLA	*	RB 1	XAM 5	XAMI 5	A 13	LA 13	_	OTRO	LXY	вм	ВМА	В	ВА
1110	Ε	ттм	ADRT	*	*	SEY 14	SEI 14	RF 6	BL BLA BML BMLA	AMC	RB 2	XAM 6	ХАМI 6	A 14	LA 14	_	OTRO	LXY	вм	вмА	В	ВА
1111	F	тск	TPW	*	szc	SEY 15	SEI 15	RF 7	BL BLA BML BMLA	AMCS	RB 3	XAM 7	XAMI 7	A 15	LA 15	-	OTRO	LXY	вм	ВМА	В	ВА

Note 14: This list shows the machine codes and corresponding machine instructions. D₃~D₀ indicate the low-order 4 bits of the machine code and D₉~D₄ indicate the high-order 6 bits. Hexadecimal numbers are also shown that represent the codes. An instruction may consist of one or two words, but only the first word is listed. Code combination indicated with asterisk (*) and bar (-) must not be used.

Two-word instructions

	Second word										
BL	11 Oxxx yyyy										
BLA	11 1xxx XXXX										
BML	10 0xxx yyyy										
BMLA	10 1xxx XXXX										

M58496-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

MACHINE INSTRUCTIONS

\ 1tem			Instruct	tion code		words	cycles			>
	Mnemonic				Hexa-	of wc	of cy(Functions	Skip conditions	Flag CY
Class ification		D ₉ D ₈	D7 D6 D5 D4	D ₃ D ₂ D ₁ D ₀	decimal	No. o	No. o			ű
S	LXY x,y	0 1	1 x x x	уууу	18y	1	1	$(X) \leftarrow x$, where, $x = 0 \sim 7$	Consecutively	×
dres					*			$(Y) \leftarrow y$, where, $y = 0 \sim 15$	described	
RAM address	INY	00	0010	0000	020	1	1	(Y)←(Y)+1		×
Я	DEY	00	0010	0001	021	1	1	$(Y) \leftarrow (Y) - 1$		×
sfer	TAB	0 0	1001	0111	097	1	1	(A)←(B)	water.	×
tran	TBA	0 0	1001	0100	094	1	1	(B)←(A)		×
ister	XAB	0 0	1001	0110	096	1	1	(A)↔(B)		×
o reg	TAY	00	1000	0101	085	1	1	(A)←(Y)	- Calaboration	×
ter t	TYA	00	0010	0011	023	1	1	(Y)←(A)		×
Register to register transfer	XDP	00	0010	0010	022	1	1	(DP)↔(DP')		×
5	ТАМ ј	0 0	1010	0 j j j	0 Aj	1	1	(A)←(M(DP))	. —	×
ansfe								$(X) \leftarrow (X) \forall j$, where, $j = 0 \sim 7$		
RAM to accumulator transfer	XAM j	00	1010	1 j j j	8A0	1	1	$(A) \leftrightarrow (M(DP))$		×
ulat	-				j			$(X) \leftarrow (X) \forall j$, where, $j = 0 \sim 7$		
Scur	XAMD j	00	1011	0]]]	O Bj	1	1	$(A) \leftrightarrow (M(DP)), (Y) \leftarrow (Y) - 1$	(Y) = 15	×
to ac								$(X) \leftarrow (X) \forall j$, where, $j = 0 \sim 7$		
Α	XAMI j	0 0	1011	1 j j j	OB8	1	1	$(A) \leftrightarrow (M(DP)), (Y) \leftarrow (Y) + 1$	(Y)=0	×
œ.					j			$(X) \leftarrow (X) \forall j$, where, $j = 0 \sim 7$		ļ
	LA n	0 0	1101	n n n n	0Dn	1	1	$(A) \leftarrow n$, where, $n = 0 \sim 15$	Consecutively described	×
	AM	0 0	1000	1010	08A	1	1	$(A) \leftarrow (A) + (M(DP))$	described	×
	AMC	0 0	1000	1110	08E	1	1	(A)←(A)+(M(DP))+(CY)		0/1
								(CY)←Carry		
	AMCS	00	1000	1111	08F	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$	(CY) = 0	0/1
								(CY)← Carry		
.0	An	00	1100	n n n n	0Cn	1	1	$(A) \leftarrow (A) + n$, where, $n = 0 \sim 15$	Carry = 0	×
Arithmetic	sc	0 0	0010	0100	024	1	1	(CY)←1	_	1
Arit	RC	0 0	0010	0101	025	1	1	(CY)←0		0
	xc	0 0	0010	0110	026	1	1	$(CY)\leftrightarrow (CY')$		(CY')
	szc	0 0	0011	1111	03F	1	1	Skip if $(CY)=0$	(CY)=0	×
	AND	0 0	1000	0110	086	1	1	$(A) \leftarrow (A) \land (M(DP))$		×
	EXL	0 0	1000	0111	087	1	1	$(A) \leftarrow (A) \forall (M(DP))$		×
	CMA	0 0	1000	1001	089	1	1	$(A) \leftarrow (\overline{A})$ $(An-1) \leftarrow (An)$		(A ₀)
	RAR	0 0	1001	0000	090	1	1	$(CY)\leftarrow (A0), (A3)\leftarrow (CY)$		(40)
	en :		1001	10	000	1	1	$(Mi(DP)) \leftarrow 1$, where, $i = 0 \sim 3$		×
ion	SB i	0 0	1001	10 i i	098 + i	1	1	(WILLDE)) — 1, WHERE, I—U~3		^
Bit manipulation	RB i	0 0	1001	11 i i	09C	1	1	$(Mi(DP)) \leftarrow 0$, where, $i = 0 \sim 3$	_	×
it mar	SZB i	0 0	0011	0 0 i i	i 03 i	1	1	Skip if $(Mi(DP)) = 0$, where, $i = 0 \sim 3$	(Mi(DP))=0	×
8									where, $i=0~3$	
	SEAM	0 0	1000	0011	083	1	1	Skip if (M(DP)) = (A)	(M(DP))=(A)	×
	SEY y	00	0100	уууу	04 y	1	1	Skip if $(Y)=y$, where, $y=0\sim15$	(Y)=y, where,	1
20									y = 0 ~ 15	
Compare	SEIn	0 0	0101	n n n n	05 n	1	1	Skip if (A)=n, where, $n=0\sim15$	(A)=n, where,	. ×
Ŭ									n = 0 ~ 15	
	SCOM	0 0	0000	0001	001	1	1	Skip if $(SCA = 0)$ and $(SCB = 0)$	SCA = 0 and	×
1	1.								SCB=0	1

MITSUBISHI MICROCOMPUTERS M58496-XXXP

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

Item			Instructio	n code		words	cycles			>
Class	Mnemonic	D ₉ D ₈	D7D6D5D4	D ₃ D ₂ D ₁ D ₀	Hexa- decimal	No. of wo	No. of cy	Functions	Skip conditions	Flag CY
	В ху	1 1	0 x x x	уууу	Зху	1	1	(PCL) ←16x + y	- Third has	×
	(Note 15)					7		(PCH)←15, (PCL)←16x+y	_	
	BL pxy	0 0	0111	pppp	07p	2	2	(PCH) ←p		×
		1 1	0 x x x	уууу	Зху			(PCL) ←16x + y		
Branch	BA xX	1 1	1 x x x	xxxx	38X + x	1	1	(PCL) ←16x +(A)	- Allendaria	×
	(Note 15)							(PCH)←15, (PCL)←16x+(A)		
	BLA pxX	0 0	0111	pppp	07p	2	2	(PCH)←p	799900	×
		1 1	1 x x x	xxxx	38X x			(PCL) ←16x+(A)		
	ВМ ху	1 0	0 x x x	уууу	2xy	1	1	(SK2)←(SK1)←(SK0)←(PC)		×
								(PCH)←14, (PCL)←16x+y		
·	(Note 15)							(PCH)←14, (PCL)←16x+y		
Subroutine call	BML pxy	00	0 1 1 1 0 x x x	P P P P Y Y Y Y	07p 2xy	2	2	(SK2)←(SK1)←(SK0)←(PC) (PCH)←p, (PCL)←16x+y		×
routir	BMA xX	1 0	1 x x x	xxxx	28X	1	1	(SK2)←(SK1)←(SK0)←(PC)		×
Subi					×			(PCH)←14, (PCL)←16x+(A)		
	(Note 15)							(PCH)←14, (PCL)←16x+(A)		
	BMLA pxX	0 0	0111	PPPP	07p	2	2	(SK2)←(SK1)←(SK0)←(PC)		×
		1 0	1 x x x	XXXX	28X + x			(PCH)←p, (PCL)←16x+(A)		
	RTI	0 0	0011	0110	036	1	1	(PC)←(SK0)←(SK1)←(SK2)		×
Return								Restore interrupt skip flags		
ď	RT	0 0	0011	0100	034	1	1	$(PC) \leftarrow (SK_0) \leftarrow (SK_1) \leftarrow (SK_2)$	Unconditional	×
	RTS	0 0	0011	0101	035	1	1	(PC)←(SK0)←(SK1)←(SK2)	Onconditional	×
	DIKS	0 0	0001	0001	011	1	1	Port K and S go to floating state		×
	IK IS	00	1001	0010	092	1	1	(A)←(K) (A)←(S)		×
	SFK	00	0001	0011	012	1	1	(K)←(A)		×
	SFS	0 0	0001	0011	013	1	1	(S)←(A)		×
	SD	0 0	0010	1001	029	1	1	$(D(Y)) \leftarrow 1$, where, $0 \le (Y) \le 10$		×
	RD	0 0	0010	1101	02D	1	1	$(D(Y)) \leftarrow 0$, where, $0 \le (Y) \le 10$		×
	ADRT	0 0	0001	1110	01E	1	1	(D)←0	NORMA	×
	OTAD	0 0	0001	1100	01C	1	1	(D7 ~D4) ←(B)	_	×
put								$(D_3 \sim D_0) \leftarrow (Y)$		
rt/output	SF m	0 0	0110	0 m m m	06m	1	1	(Fm) ←1, where, m = 0 ~ 7	_	×
Input	RF m		0110	1 mmm	068	1	1	(Fm)←0, where, m=0~7	-	×
, =		5 0	3.10		+ m		l .	(in) (in)		^
	OTRO mn	0 1	0 m m m	n n n n	1 mn	1	1	$(F_0 \sim F_3) \leftarrow n$, where, $n = 0 \sim 15$ $(F_4, P_0, P_1) \leftarrow m$, where, $m = 0 \sim 7$	-	×
	SPO	0 0	0001	1000	018	1	1	(P ₀)←1		×
	SP1	0 0	0001	1010	01A	1	1	(P ₁)←1	_	×
	TLC	0 0	0001	0000	010	1	1	$(R(LC_0))\leftarrow (Ai)$, where, $i=0\sim 3$	_	×
								(R(LCn+1))←(R(LC n))		
	ELC	00	0001	0111	017	1	1	(P(LCn))←(R(LCn+1))	_	×
								(P(COMn))←(R(COMn))		
	DLC	0 0	0001	0101	015	1	1	(P(LCn))←(R(LCn+1))	_	×
								(P(COM)) ← ½ (Vcc - VLcD) + VLcD		

Item			Instructio	on code		words	cles		A	۲
Class	Mnemonic	D ₉ D ₈	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Hexa- decimal	ō.	No. of cycles	Functions	Skip conditions	Flag C
	EIA	00	0000	0010	002	1	1	Enables interruption of INT _A signal.		×
	DIA	00	0000	0011	003	1	1	Disables interruption of INT _A signal.		\times
Interrupt	EIB	00	0000	0100	004	1	1	Enables interruption of INT _B signal.	. —	\times
Inte	DIB	00	0000	0101	005	1	- 1	Disables interruption of INT _B signal.	1	×
4.	EIT	00	0000	1000	800	-1	1	Enables interruption of INT _T signal.		×
	DIT	00	0000	1001	009	1	1	Disables interruption of INT _T signal.	-	×
_	STM	00	0000	1010	OOA	1	1	(TM)←(A), (TM F/F)←0		×
Timer								7-bit prescaler presetting	4	
<u> </u>	TTM	0 0	0000	1110	00E	1	1	Skip if $(TM F/F) = 1$	(TM F/F)=1	×
-	тск	0 0	0000	1111	OOF	1	1	Skip if $(CK F/F) = 1$	(CKF/F)=1	×
ontro	POF1	00	0000	1100	00C	1	1	(CK F/F)←0		\times
) <u>≻</u>	POF2	00	0000	1011	OOB	1	1	(PW F/F)←0	-	×
ddm	TPW	00	0001	1111	01F	1	1	Skip if $(PW F/F) = 1$	(PWF/F)=1	×
Power supply control	DETS	00	0000	0 1 1 0	006	î	1	(DET F/F)←1		×
Pov	DETR	00	0000	0111	007	1	1	(DET F/F)←0	·	×
	SDET	00	0000	1101	OOD	1	1	Skip if (BDout) = 1	(BDout)=1	×
Misc.	NOP	00	0000	0000	000	1	1	No operation	11 T	×

Note 15: Instructions B, BA, BM or BMA execute the second function of the functions column when executed, provided that none of instructions RT, RTS, BL, BML, BLA or BMLA was executed after execution of instruction BM or BMA.

^{16:} When the M58496-XXXP generates a skip it is not necessary to increment the program counter so no additional cycles are required for execution.

Symbol	Meaning	Symbol	Meaning
Α	4-bit register (accumulator)	P(COMn)	Common output port for liquid crystal display
Ai	Indicates the bits of register A. Where i=1~3	P(LCn)	Segment output port for liquid crystal display
В	4-bit auxiliary register	PW F/F	1-bit power supply control flag display
BDout	Battery detector signal	R(COMn)	Common register for liquid crystal display (4 bits)
CK F/F	1-bit 1-second flag	R(LCn)	Segment register for liquid crystal display (25 bits)
CY	1-bit carry flag	S	4-bit I/O port
CY'	1-bit carry flag	SCA	Output of bit A of control counter for liquid crystal display
D	11-bit output port	SCB	Output of bit B of control counter for liquid crystal display
Di	Indicates the bits of port D. Where i=0~3	SKO .	11-bit stack register
D(Y)	The bit of port D addressed by Y	SK1	11-bit stack register
DP	7-bit data pointer composed of register Y, X	SK2	11-bit stack register
		TM	4-bit timer/counter
Y, Y'	4-bit register	TM F/F	1-bit timer/counter flag
X, X'	3-bit register	xx	2-bit binary variable
DP'	7-bit data pointer	уууу	4-bit binary variable
DET F/F	1-bit battery detector flag	mmm	3-bit binary variable
F	8-bit output port	nnnn	4-bit binary variable
Fi	Indicates the bits of port F. Where i=0~7	ii	2-bit binary variable
K	4-bit I/O port	iii .	3-bit binary variable
M(DP)	4-bit data of memory addressed by data pointer DP	XXXX	4-bit unknown binary variable (the value does not affect
		+	Indicates direction of data flow execution
Mi(DP)	A bit of data of memory addressed by data pointer DP	()	Indicates contents of register memory, etc.
	where i=0~3	¥	Exclusive OR
PC	11-bit program acounter composed of PC _L , PC _H	^	AND
		annum year	Negation
PCL	Low-order 7 bits of the program counter	X	Indicates flag is unaffected by instruction execution
P CH	High-order 4 bits of the program counter	ху	Label used to indicate the address
Po	4-bit output port	C	Hexadecimal number C + binary number-X
P1	4-bit output port	+ ×	Trondounted from G . Smary

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

DESCRIPTION

The MELPS 8-48 LSI family is a low-cost high-performance single-chip microcomputer series. The functions have been integrated. For example the CPU, ROM, RAM, I/O ports, timer and other circuits are all on one chip. The MELPS 8-48 family has the following three configurations to meet the requirements of different applications for various ROM and RAM capacities.

M5L8048-XXXP

ROM 1024 bytes RAM 64 bytes I/O 27 pins

M5L8049-XXXP

ROM 2048 bytes RAM 128 bytes I/O 27 pins

M5L8748S

EPROM 1024 bytes RAM 64 bytes I/O 27 pins

Timer and interrupt inputs are also built into these chips. The program memory capacity can easily be expanded to 4K bytes. The M5L8243P input/output expander chip can be used to extend the I/O capability. The family of microcomputers allows designers to fabricate systems for applications simply and quickly.

The M5L8048-XXXP contains 1K bytes of read only memory and the M5L8049-XXXP contains 2K bytes. The contents of the memory is set by a mask during manufacture. This makes it practical to mass produce ROMs containing customer developed programs.

The M5L8748S contains 1K bytes of EPROM and is pincompatible with the M5L8048-XXXP. Its memory can be electrically written and changed by the user. This chip can be used while a system is being developed and subject to modifications. Once the system has been checked out and the program debugged, the program can be masked in the M5L8048-XXXP.

A cross assembler, the MELPS 8-48, is available for use with this family of microcomputers. Designers will find the assembler convinient and easy to use.

BASIC FUNCTION BLOCKS Program Memory (ROM)

The M5L8048-XXXP and M5L8748S contain 1024 bytes of ROM, in the case of the M5L8748S, it is EPROM and its contents can easily be changed by the user. The M5L8049-XXXP contains 2048 bytes of ROM. The program for the users application is stored in this ROM. Addresses 0, 3, 7 of the ROM are reserved for special functions. Table 1 shows the meaning and function of these three special addresses.

Table 1 Reserved, defined addresses and their meanings and functions

Address	Meaning and function	
0	The first instruction executed after a system reset.	
3	The first instruction executed after an external interrupt is accepted.	
7 The first instruction executed after a timer interrupt is accepted.		

The ROM can be used to store constants and other 8-bit fixed data in addition to the program. Instructions such as MOVP A, @A and MOVP3 A, @A can be used to access the constants and data. The data could be in the form of tables, and can be easily looked up.

Data Memory (RAM)

The M5L8048-XXXP and M5L8748S contain 64 bytes of RAM. The M5L8049-XXXP contains 128 bytes of RAM. The RAM is used for data storage and manipulation and is divided into sections for more efficient processing. Addresses 0~7 and 24~31 form two banks of general purpose registers that can be directly addressed. Addresses 0~7 compose bank 0 and are numbered R0~R7. Addresses 24~31 compose bank 1 and are also numbered R0~R7. Only one bank is active at a time. The instructions SEL RB0 and SEL RB1 are used to select the working bank. Fig. 1 shows the division of the RAM and its mapping.

Addresses 8~23 compose an 8-level program counter stack. The details for using the stack will be found in the "Program Counter and Stack" section. Please refer to that section for details.

The remaining section, addresses 32 and above, must be accessed indirectly using the general-purpose registers R0 or R1. Of course all addresses can be indirectly addressed using the general-purpose registers R0 and R1.

A good practice to simplify programming is to reserve general-purpose register bank 0 for use of the main program and register bank 1 for interrupt programs. For example if register bank 0 (addressed 0~7) is reserved for processing data by the main program, when an interrupt is accepted the first instruction would be to switch the working registers from bank 0 to bank 1. This would save the data of the main program (addresses 0~7). The interrupt program

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

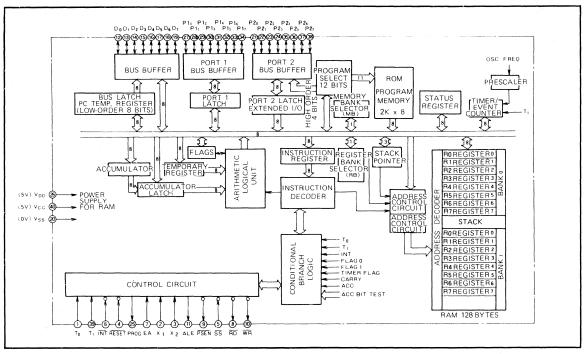


Fig. 1 Block diagram of M5L8039P, M5L8048-XXXP and M5L8049-XXXP

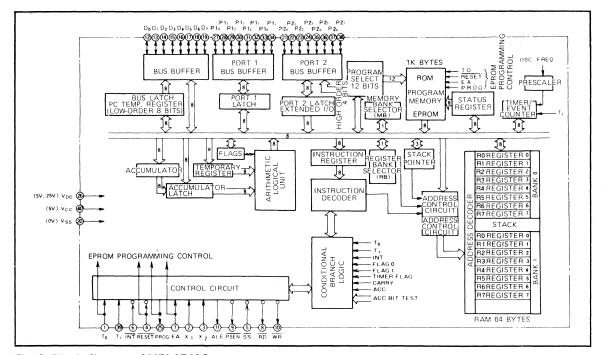


Fig. 2 Block diagram of M5L8748S

MITSUBISHI MICROCOMPUTERS MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

can then freely use register bank1 (addresses 24~31) without destroying or altering data of the main program. When the interrupt processing is complete and control is returned to the main program by the RETR instruction, register bank 0 (in this example) is automatically restored as the working register bank at the same time the main program counter is restored.

Addresses 0~31 have special functions, but when not all of the registers are required, the ones not needed can be used for general storage. This includes both banks of general-purpose registers and the stack.

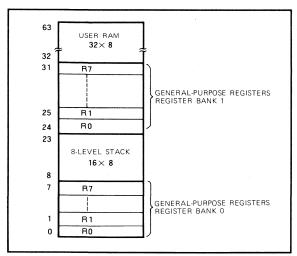


Fig. 1 Data memory (RAM)

PROGRAM COUNTER (PC) AND STACK (SK)

The MELPS 8-48 program counter is composed of a 12-bit binary counter as shown in Fig. 2. The low-order 10 bits can address 1024 bytes of memory. When the high-order 2 bits are zero, the internal, on chip memory is accessed. The high-order 2 bits can have the values $1\sim3$, which allows the user to add up to three banks of 1024 bytes. The program counter can address up to 4096 bytes of memory.

Addresses 8~23 of RAM are used for the stack (program counter stack). The stack provides an easy and automatic means of saving the program counter and other control information when an interrupt is accepted or a subroutine is called. For example, if control is with the main program and an interrupt is accepted, the contents of the 12-bit PC (program counter) is saved in the top of the stack, so it can be restored when control is returned to the main program. In addition to the PC, the high-order 4 bits of the PSW (program status word) are saved in the stack and restored along with the PC. A total of 16 bits are saved, the 12-bit

PC and 4 bits of the PSW. A 3-bit stack pointer is associated with the stack. This pointer is a part of the PSW and indicates the top of the stack. The stack pointer indicates the next empty location (top of the stack), in case of an empty stack the top of the stack is the bottom of the stack. The data memory addresses associated with the stack pointer along with the data storage sequence are shown in Fig. 3.

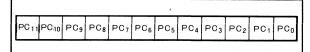


Fig. 2 Program counter

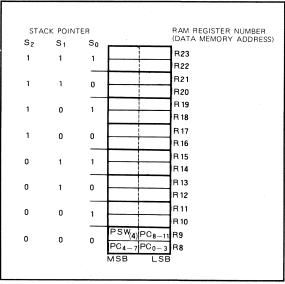


Fig. 3 Relation between the program counter stack and the stack pointer

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

PROGRAM STATUS WORD (PSW)

The PSW (program status word) is stored in 8 bits of register storage. The configuration of the PSW is shown in Fig. 4. The high-order 4 bits of the PSW are stored in the stack, along with the PC, when an interrupt is accepted or a subroutine call executed. When control is returned to the main program by RETR both the PC and the high-order 4 bits of PSW are restored. When control is returned by RET only the PC is restored, so care must be taken to assure that the contents of the PSW was not unintentionally changed.

The order and meaning of the 8 bits of the PSW are shown below.

Bit 0~2: Stack pointer (S₀, S₁, S₂)

Bit 3: Unused (always 1)

Bit 4: Working register bank indicator

Bit 5: Flag 0 (value is set by the user and can be tested)

Bit 6: Auxiliary carry (AC) (it is set/reset by instructions ADD and ADC and used by instruction DA A).

Bit 7: Carry bit (C) (indicates an overflow after execu-

tion)

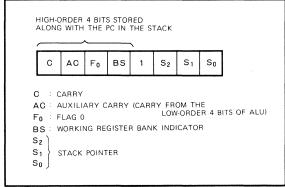


Fig. 4 Program status word

I/O PORTS

The MELPS 8-48 has three 8-bit ports, which are called data bus, port 1 and port 2.

Port 1 and Port 2

Ports 1 and 2 and both 8-bit ports with identical properties. The output data of these ports are retained and do not change until another output is loaded into them. When used as inputs the input data is not retained so the input signals must be maintained until an input instruction is executed and completed.

Ports 1 and 2 so-called quasi-bidirectional ports have a special circuit configuration to accomplish this. The special circuit is shown in Fig. 5. All terminals of ports 1 and 2 can be used for input or output.

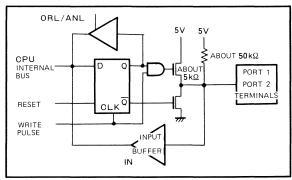


Fig. 5 I/O ports 1 and 2 circuit

Internal on chip pull-up resistors are provided for all the ports. Through the use of pull-up resistors, TTL standard high-level or low-level signals can be supplied. Therefore each terminal can be used for both input and output. To shorten switching time from low-level to high-level, when 1s are output, a device of about $5k\Omega$ or lower is inserted for a short time (about 500ns when using a 6MHz crystal oscillator).

A port used for input must output all 1s before it reads the data from the input terminal. After resetting, a port is set to an input port and remains in this state, therefore it is not necessary to output all 1s if it is to be used for input. In short a port being used for output must output 1s before it can be used for input.

The individual terminals of quasi-bidirectional ports can be used for input or output. Therefore some terminals can be in the input mode while the remaining terminals of a port are in the output mode. This capability of ports 1 and 2 is convenient for inputting or outputting 1-bit or data with few bits. The logical instructions ANL and ORL can easily be used to manipulate the input or output of these ports.

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Data Bus (Port 0)

The data bus is an 8-bit bidirectional port, which is used with I/O strobed signals. When the data bus is used for output the output data is latched, but if it is used for input the data is not latched. Unlike ports 1 and 2, which can have individual terminals in the input or output mode, all terminals of the data bus are in the input or output mode.

When the data bus is used as a static port the OUTL instruction can be used to output data and the INS instruction to input data. Strobe pulse \overline{RD} is generated while the INS instruction is being executed or \overline{WR} while OUTL is being executed.

The data bus read/write using MOVX instructions, but then the data bus is a bidirectional port. To write into the data bus a \overline{WR} signal is generated and the data is valid when \overline{WR} goes high. When reading from the data bus, an \overline{RD} signal is generated. The input levels must be maintained until \overline{RD} goes high. When the data bus is not reading/writing, it is in the high-impedance state.

CONDITIONAL JUMPS USING TERMINALS T_0 , T_1 and \overline{INT}

Conditional jump instructions are used to alter program depending on internal and external conditions (states). Details of the jump instructions for the MELPS 8-48 can be found in the section on machine instructions.

The input signal status of T_0 , T_1 and \overline{INT} can be checked by the conditional jump instructions. These input terminals, through conditional jump instructions such as JTO and JNTO, can be used to control a program. Programs and processing time can be reduced by being able to test data in input terminal rather than reading the data into a register and then testing it in the register.

Terminal T_0 , T_1 and \overline{INT} have other functions and uses that are not related to conditional jump instructions. The details of these other functions and uses can be found in the section on terminal functions.

INTERRUPT

The CPU recognizes an external interrupt by a low-level state at the INT terminal. A "Wired-OR" connection can be used for checking multiple interrupts.

The INT terminal is tested for an interrupt request at the ALE signal output of every machine cycle. When an interrupt is recognized and accepted, control is transferred to the interrupt handling program. This is accomplished by an unconditional jump to address 3 of program memory, which is the start of the interrupt handling program, at the same time the program counter and 4 high-order bits of PSW are automatically moved to the top of the stack.

The interrupt level is one, so the next interrupt cannot be accepted until the current interrupt processing has been completed. The RETR instruction terminates the interrupt processing. That is to say, the next interrupt can not be accepted until the RETR instruction is executed. The next interrupt can be accepted at the start of the second cycle of the RETR instruction (2-cycle instruction). Time/event counter overflow which causes an interupt request also will not be accepted.

After the processing for an interrupt is completed control is returned to the main program. This is accomplished by executing RETR which restores the program counter and PSW automatical and checks $\overline{\text{INT}}$ and the time/event counter overflow for an interrupt request. If there is an interrupt request, the control will not be returned to the main program but will be transferred to the interrupt handling program.

An external interrupt has a higher priority than a timer interrupt. This means that, if an external and timer interrupt request are generated at the same time, the external interrupt has the priority and will be accepted first.

When a second level of external interrupt is required, the timer interrupt, if not being used, can provide this. The procedure for this is to first disable the timer interrupt, set the timer/event counter to FF_{16} and put the CPU in the event counter mode. After this has been done, if T_1 input is changed to low-level from high-level, an interrupt is generated in address 7.

Terminal \overline{INT} can also be tested using a conditional jump instruction. For more details on this procedure, check the "Conditional Jumps Using Terminals T_0 , T_1 and \overline{INT} " section.

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

TIMER/EVENT COUNTER

The timer/event counter for the MELPS 8-48 is an 8-bit counter, that is used to measure time delays or count external events. The same counter is used to measure time delays or count external events by simply changing the input to the counter.

The counter can be initialized by executing an MOV T, A instruction. The value of the counter can be read for checking by executing an MOV A, T instruction. Reset will stop the counting but the counter is not cleared, so counting can be resumed.

The largest number the counter can contain is FF_{16} . If it is incremented by 1 when it contains FF_{16} , the counter will be reset to 0, the overflow flag is set and a timer interrupt request is generated.

The conditional jump instruction JTF can be used to test the overflow flag. Care must be used in executing the JTF instruction because the overflow flag is cleared (reset) when executed. When a timer interrupt is accepted, the control is transferred to address 7 of program memory.

When both a timer and external interrupt request are generated at the same time, the external interrupt is given priority and will be accepted first by automatically jumping to address 3 of program memory. The timer interrupt request is kept and will be processed when the external interrupt has been completed and a PETR is executed. A latched timer interrupt request is cancelled when a timer interrupt request is generated. A timer interrupt request can be disabled by executing a DIS TCNTI instruction.

The STRT CNT instruction is used to change the counter to an event counter. Then terminal T_1 signal becomes the input to the event counter and an event is counted each full cycle (low-high-low one event). The maximum rate that can be counted is one time in 3 machine cycles (7.5 μ s when using 6MHz crystal). The high-level at T_1 must be maintained at least 1/5 of the cycle time (500ns when using 6MHz crystal).

The STRT T instruction is used to change the counter to a timer. The internal clock signal becomes the input to the timer. The internal clock is 1/32 of 400kHz (when using 6MHz crystal) or 12.5kHz. The timer is therefore counted up every $80\mu s$. Fig. 6 shows the timer/event counter.

The counter can be initialized by executing an MOV T, A instruction. The timer can be used to measure $80\mu s\sim 20ms$ in multiples of $80\mu s$. When it is necessary to measure over 20ms (maximum count $256\times80\mu s$) of delay time the number of overflows,one every 20ms, can be counted by the program. To measure times of less than $80\mu s$; external clock pulses can be input through T_1 while the counter is in the event counter mode. Every third (or more) ALE signal can be used instead of an external clock.

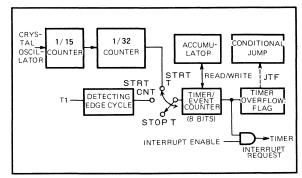


Fig. 6 Timer/event counter

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

MELPS 8-48 CYCLE TIMING

The output of the state counter is 1/3 the input frequency from the oscillator. When a 6MHz crystal is used for input, the output would be 2MHz (500ns). A CLK signal is generated every 500ns (one state cycle) which is used for the demarcation of each machine state. The instruction ENTO CLK will output the CLK signal through terminal T_0 . The input of the cycle counter is CLK (state cycle) and the output is an ALE signal which is generated every 5 state cycles.

Fig. 8 Shows the relationship between clock and generated cycles.

One machine cycle contains 5 states with a CLK signal for demarcation of each state. The MELPS 8-48 instructions are executed in one machine cycle or two machine cycles. An instruction cycle can be one or two machine cycles as shown in Fig. 9.

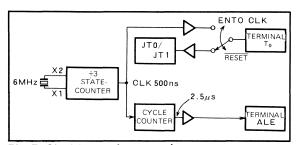


Fig. 7 Clocking cycle generation

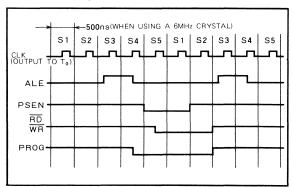


Fig. 8 Clock and generated cycle signals

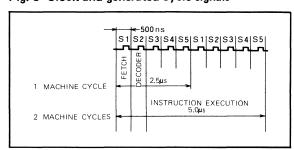


Fig. 9 Instruction execution timing

RESET

The reset terminal is for resetting the CPU. A Schmitt trigger circuit along with a pull-up register are connected to it on the chip. A reset can easily be generated by attaching a $1\mu F$ as capacitor as shown in Fig. 10. An external reset pulse applied at \overline{RESET} must remain at low-level for at least 50ms after power has been turned on and reached its normal level.

The reset function causes the following initialization within the CPU.

- 1. Program counter is reset to 0.
- 2. Stack pointer is reset to 0.
- 3. Register bank is reset to 0.
- 4. Memory bank is reset to 0.
- 5. Data bus is cleared to high-impedance state.
- 6. Ports 1 and 2 are reset to input mode.
- External and timer interrupts are reset to disable state.
- 8. Timer is stopped.
- 9. Timer overflow flag is cleared.
- 10. Flags F₀ and F₁ are cleared.
- 11. Clock output for terminal T_0 is disabled.

Note 1: On the M5L8748S the RESET terminal, in addition to being used for the reset function, is also used when reading and writing data in the EPROM on the chip. Details on this will be found in the section on reading and writing data in the M5L8748S.

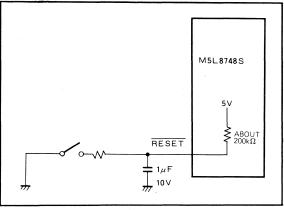


Fig. 10 Example of a reset circuit

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

SINGLE-STEP OPERATION

The terminal \overline{SS} on the MELPS 8-48 is provided to facilitate single-step operation. In single-step operation, the CPU stops after the execution of each instruction is completed and the memory address (12 bits) of the next instruction to be fetched is output through the data bus (8 bits) plus the low-order 4 bits of port 2 ($P_{20} \sim P_{23}$). The user can use this to trace the flow of this program instruction by instruction and will find this an aid in program debugging. Single-step operation is controlled through \overline{SS} and ALE as shown in Fig. 11

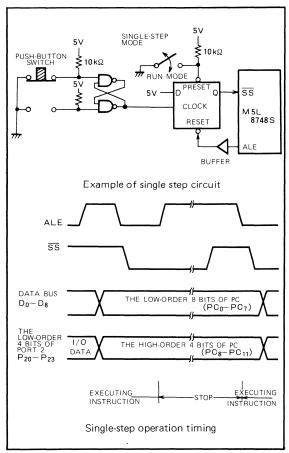


Fig. 11 Single-step operation circuit and timing

A type D flip-flop with preset and reset terminals, as shown in Fig. 11, is used to generate the signal for \overline{SS} . When the preset terminal goes to low-level, \overline{SS} goes to high-level, which puts the CPU in RUN mode. When the preset terminal is grounded it goes to high-level. Then \overline{SS} goes to low-level. When \overline{SS} goes to low-level, the CPU stops. Then when the push-button switch is pushed, a pulse is sent to the clock terminal of the type D flip-flop which turns \overline{SS} to high-level. When \overline{SS} goes to high-level the CPU fetches the

next instruction and begins to execute it, but then an ALE signal is sent to the reset terminal of the type D flip-flop which turns \overline{SS} to low-level. The CPU again stops as soon as execution of the current instruction is completed. When the push-button switch is again pushed, the cycle is repeated and the CPU is in single-step operation as shown in Fig. 12. While the CPU is stopped in single-step operation, the data bus and the low-order 4 bits of port 2 are used to output the memory address of the next instruction to be fetched. This interferes with input and output, but essential input/output can be latched by using the rising edge of ALE as clock.

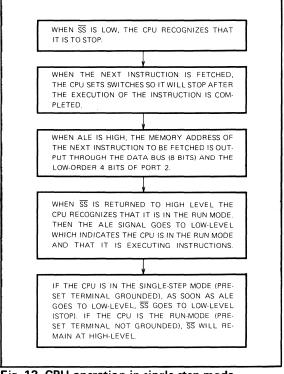


Fig. 12 CPU operation in single-step mode

Central Processing Unit (CPU)

Central Processing Unit (CPU) is composed of an 8-bit parallel arithmetic unit, accumulator, flag flip-flop and instruction decoder. The 8-bit parallel arithmetic unit has circuitry to perform the four basic arithmetic operations (plus, minus, multiply and divide) as well as logical operations such as AND and OR. The flag flip-flop is used to indicate status such as carry and zero. The accumulator contains one of the operations and the result is usually retained in the accumulator.

MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

MACHINE INSTRUCTIONS

Item		Instruction code		S	8			ffect	ed	Description
Type	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Byte	Cycles	Function	С	AC	Note	Description
	MOV A, #n	0 0 1 0 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	2 3 n	2	2	(A)←n				Transfers data n to register A.
	MOV A, PSW	1100 0111	C 7	1.	1	(A)←(PSW)				Transfers the contents of the program status word to register A.
	MOV A, Rr	1111112110	F 8 + r	1	1	(A) ← (Rr) r = 0 ~ 7				Transfers the contents of register $R_{\rm r}$ to register A.
	MOV A, @Rr	1111000° ₀	F 0 + r	1	1	$(A) \leftarrow (M(Rr))$ $r = 0 \sim 1$				Transfers the contents of memory location, of the current page, whose address is in register R_{r} to register A .
	MOV PSW, A	1 1 0 1 0 1 1 1	D 7	1	1	$(PSW) \leftarrow (A)$ $(C) \leftarrow (A_7), (AC) \leftarrow (A_6)$	0	0		Transfers the contents of register A to the program status word.
	MOV STS, A (Note 3)	1001 0000	90	1	1	$(STS) \leftarrow (A)$ $(ST4 \sim ST7) \leftarrow (A4 \sim A7)$			4	Transfers the contents of register A to the system status register.
	MOV Rr, A	1010 1 r ₂ r ₁ r ₀	A 8 + r	1	1	(Rr) ← (A) r=0~7				Transfers the contents of register A to register $R_{\rm r.}$
Transfer	MOV Rr, #n	1 0 1 1 1 r ₂ r ₁ r ₀ n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	B 8 + r n	2	2	(Rr) ← n r=0~7				Transfers data n to register R _r .
	MOV @Rr, A	1010 000 r _o	A 0 + r	1	1	(M(Rr))←(A) r=0~1				Transfers the contents of register A to memory location, of the current page, whose address is in register $R_{\rm r}$.
	MOV @Rr, #n	1 0 1 1 0 0 0 r ₀ n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	B 0 + r n	2	2	(M(Rr))←n r=0~1				Transfers data n to memory location, of the current page, whose address is in register $R_{\rm r}$.
	MOVP A, @A	1010 0011	А З	1	2	(A)←(M(A))				Transfers the data of memory location, of the current page, whose address is in register A to register A.
	MOVP3 A, @A	1 1 1 0 0 0 1 1	E 3	1	2	(A)←(M(page 3, A))				Transfers the data of memory location, of page 3, whose address is in register A to register A.
	MOVX @Rr, A (Note 2)	1001 000r ₀	9 0 + r	1	2	(Mx(Rr))←(A) r=0~1				Transfers the contents of register A to memory location, of the current page, whose address is in register $R_{\rm r}$.
	MOVX A, @Rr (Note 2)	1000 000r ₀	0 8 + r	1	2	$(A) \leftarrow (Mx(R_r))$ $r = 0 \sim 1$				Transfers the contents of memory location, of the current page, whose address is in register R_r to register A.
	XCH A, Rr	0 0 1 0 1 r ₂ r ₁ r ₀	2 8 + r	1	1	$(A) \longleftrightarrow (Rr)$ $r = 0 \sim 7$				Exchanges the contents of register R_r with the contents of register A .
	XCH A, @Rr	0010 000r ₀	2 0 + r	1	1	$(A) \longleftrightarrow (M(Rr))$ $r = 0 \sim 1$				Exchanges the contents of memory location, of the current page, whose address is in register $R_{\rm r}$ with the contents of register A.
	XCHD A, @Rr	0011000r ₀	3 0 + r	1	1	$(A_0 \sim A_3) \longleftrightarrow (M(Rr_0 \sim Rr_3))$ r=0~1				Exchanges the contents of the low-order four bits of register A with the low-order four bits of memory location, of the current page, whose address is in register R _r .
	ADD A, #n	0 0 0 0 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	0 3 n	2	2	(A) ← (A) + n	0	0	1	Adds data n to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.
	ADD A, Rr	0 1 1 0 1 r ₂ r ₁ r ₀	6 8 + r	1	1	$(A) \leftarrow (A) + (Rr)$ $r = 0 \sim 7$	0	0	1	Adds the contents of register R_r to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.
Arithmetic	ADD A, «Rr	0 1 1 0 0 0 0 r ₀	6 0 + r	1	1	(A) ← (A)+(M(Rr)) r=0-1	0	0	1	Adds the contents of register A and the contents of memory location, of the current page, whose address is in register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A
Arith	ADDC A, #n	0 0 0 1 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	1 3 n	2	2	(A) ← (A)+n+(C)	0	0	1	Adds the carry and data n to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.
	ADDC A, Rr	0 1 1 1 1 1 1 2 1 1 1 0	7 8 + r	1	1	$(A) \leftarrow (A) + (Rr) + (C)$ $r = 0 \sim 7$	0	0	1	Adds the carry and the contents of register R_r to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.
	ADDC A, @Rr	0 1 1 1 0 0 0 r ₀	7 0 + r	1	1	(A) ← (A) + (M(Rr)) + (C) r = 0 ~ 1	0	Ö	1	Adds the carry and the contents of memory location, of the current page, whose address is in register P, to the contents of register A and sets the carry flags to 1 if there is an overflow otherwise resets the carry flags to 0. The result is stored in register A.

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

Item		Instruction code		88	s		E	ffect carry	ed	
Type	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Bytes	Cycles	Function	С	AC	Note	Description
	ANL A, ♯n	0 1 0 1 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	5 3 n	2	2	(A) ← (A) ∧ n				The logical product of the contents of register A and data n, is stored in register A.
	ANL A, Rr	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 8 + r	1	1	(A) ← (A) Λ (Rr) r=0~7		-		The logical product of the contents of register A and the contents of register $R_{\rm r}$, is stored in register A.
	ANL A, @Rr	0 1 0 1 0 0 0 r ₀	5 0 + r	1	1	$(A) \leftarrow (A) \wedge (M(Rr))$ $r = 0 \sim 1$				The logical product of the contents of register A and the contents of memory location, of the current page, whose address is in register R _r , is stored in register A.
-	ORL A, #n	0 1 0 0 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	4 3 n	2	2	(A) ← (A) Vn				The logical sum of the contents of register A and data n, is stored in register A.
	ORL A, Rr	0 1 0 0 1 72 71 70	4 8 + r	1	1	$(A) \leftarrow (A) \vee (Rr)$ $r = 0 \sim 7$				The logical sum of the contents of register A and the contents of register R_r is stored in register A.
	ORL A, @Rr	0 1 0 0 0 0 0 r ₀	4 0 + r	1	1	(A) ← (A) V (M(Rr)) r = 0 ~ 1				The logical sum of the contents of register A and the contents of memory location, of the current page, whose address is in register R _r , is stored in register A.
	XRL A, ♯n	1 1 0 1 0 0 1 1 n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	D3 n	2	2	(A) ← (A) V n				The exclusive OR of the contents of register A and data n, is stored in register A.
Arithmetic	XRL A, Rr	1 1 0 1 1 r ₂ r ₁ r ₀	D 8 + r	1	1	$(A) \leftarrow (A) \forall (Rr)$ $r = 1 \sim 7$				The exclusive OR of the contents of register A and the contents of register R_r is stored in register A.
Arith	XRL A, @Rr	1 1 0 1 0 0 0 r ₀	D 0 + r	1	1	$(A) \leftarrow (A) \forall (M(Rr))$ $r = 0 \sim 1$				The exclusive OR of the contents of register and the contents of memory location, of the current page, whose address is in register $R_{\rm r}$, is stored in register A .
	INC A	0001 0111	1 7	1	1	$(A) \leftarrow (A) + 1$				Increments the contents of register A by 1. The result is stored in register A, and the carries are unchanged.
	DEC A	0 0 0 0 0 1 1 1	0 7	1	1	(A) · (A) 1				Decrements the contents of register A by 1. The result is stored in register A, and the carries are unchanged.
-	CLR A	00100111	2 7	1	1	(A) ← 0				Clears the contents of register A, resets to 0.
	CPL A	0 0 1 1 0 1 1 1	3 7	1	1	$(A) \leftarrow (\overline{A})$				Forms 1's complement of register A, and stores it in register A.
	DA A	0 1 0 1 0 1 1 1	5 7	1	1	(A) ← (A) 10 Hexadecimal	0	0	1	The contents of register A is converted to binary coded decimal notion, and it is stored in register A, If the contents of register A are more than 99 the carry flags are set to 1 otherwise they are reset to 0.
	SWAP A	0 1 0 0 0 1 1 1	4 7	1	1	$(A_4 - A_7) \longleftrightarrow (A_0 - A_3)$				Exchanges the contents of bits 0~3 of register A with the contents of bits 4~7 of register A.
	RLA	1 1 1 0 0 1 1 1	E 7	1	1	$(A_{n+1}) \leftarrow (A_n)$ $(A_0) \leftarrow (A_7)$ $n = 0 - 6$				Shifts the contents of register A left one bit: A_7 the MSB is rotated to A_0 the LSB.
	RLC A	1 1 1 1 0 1 1 1	F 7	1	1	$ \begin{array}{c} (A_{n+1}) \leftarrow (A_n) \\ (A_0) \leftarrow (C) \\ (C) \leftarrow (A_7) n = 0 \sim 6 \end{array} $	0			Shifts the contents of register A left one bit. A_7 the MSB is shifted to the carry flag and the carry flag is shifted to A_0 the LSB.
	RR A	0 1 1 1 0 1 1 1	7 7	1	1	$(A_n) \leftarrow (A_{n+1})$ $(A_7) \leftarrow (A_0)$ $n = 0 \sim 6$				Shifts the contents of register A right one bit. A ₀ the LSB is rotated to A ₇ the MSB.
	RRC A	0 1 1 0 0 1 1 1	6 7	1	1	$(A_n) \leftarrow (A_{n+1})$ $(A_7) \leftarrow (C)$ $(C) \leftarrow (A_0) n = 0 - 6$	0			Shifts the contents of register A right one bit. A_0 the LSB is shifted to the carry flag and the carry flag is shifted to A_7 the MSB.
metic	INC Rr	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 8 + r	1	1	$(Rr) \leftarrow (Rr) + 1$ $r = 0 \sim 7$				Increments the contents of register R_r by 1. The result is stored in register R_r and the carries are unchanged.
Register arithmetic	INC @Rr	0 0 0 1 0 0 0 r ₀	1. 0 + r	1	1	$(M(Rr)) \leftarrow (M(Rr)) + 1$ $r = 0 \sim 1$				Increments the contents of the memory location, of the current page, whose address is in register R _r by 1. Register R _r uses bit $0\sim5$.
Regi	DEC Rr	1 1 0 0 1 r ₂ r ₁ r ₀	C 8 + r	1	1	$(Rr) \leftarrow (Rr) - 1$ $r = 0 \sim 7$				Decrements the contents of register R _r by 1. The result is stored in register R _r and the carries are unchanged.

MITSUBISHI MICROCOMPUTERS MELPS 8-48 MICROCOMPUTERS

Item		Ins	truction code		×	S		Е	ffect	ed	
Type	Mnemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Bytes	Cycles	Function	С	AC	Note	Description
	JBb m	b ₇ b ₆ b ₅ 1 m ₇ m ₆ m ₅ m ₄	0 0 1 0 m ₃ m ₂ m ₁ m ₀	1 2 + b×2 m	2	2	$ \begin{array}{lll} (A_b) = 1 & \text{then } (PC_0 \sim PC_7) \leftarrow m \\ (A_b) = 0 & \text{then } (PC) \leftarrow (PC) + 2 \\ b_7b_6b_5 = 0 \sim 7 \end{array} $				Jumps to address m of the current page when bit b of register A is 1. Executes the next instruction when bit b of register A is 0.
	JNIBF m (Note 3)	1 1 0 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	D 6 m	2	2	$(IBF) = 0$ then $(PC_0 \sim PC_7) \leftarrow m$		-		Jumps to address m of the current page when IBF is 0, otherwise the next instruction is executed.
	JOBF m (Note 3)	1 0 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	8 6 m	2	2	$(OBF) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$				Jumps to address m of the current page when OBF is 0, otherwise the next instruction is executed.
	JTF m	0 0 0 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	1 6 m	2	2	$(TF) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(TF) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when the overflow flag of the timer is 1 otherwise the next instruction is executed. Flag is cleared after executing.
	JNI m (Note 3)	1 0 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	8 6 m	2	2	(INT) = 0 then $(PC_0 - PC_7) \leftarrow m$ (INT) = 1 then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when external interrupt terminal is low-level, otherwise the next instruction is executed.
	JMP m	m ₁₀ m ₉ m ₈ 0 m ₇ m ₆ m ₅ m ₄	0 1 0 0 m ₃ m ₂ m ₁ m ₀	0 4 + (m _{8 ~} m ₁₀) ×2 m	2	2	$(PC_8 \sim PC_{10}) \leftarrow m_8 \sim m_{10}$ $(PC_0 \sim PC_7) \leftarrow m_0 \sim m_7$ $(PC_{11}) \leftarrow (MBF)$				Jumps to address m on page $\rm m_{10}~m_9~m_8$ in the memory bank indicated by MBF.
	JMPP @A	1011	0 0 1 1	В 3	1	2	(PC ₀ ~PC ₇)←(M(A))				Jumps to the memory location, of the current page, whose address is in register A. But when the instruction executed was in address 255, jumps to next page.
Jump	DJNZ Rr, m	1 1 1 0 m ₇ m ₆ m ₅ m ₄	1 r ₂ r ₁ r ₀ m ₃ m ₂ m ₁ m ₀	E 8 r m	2	2	$(Rr) \leftarrow (Rr) - 1$ $r = 0 \sim 7$ $(Rr) = 0$ then $(PC_0 \sim PC_7) \leftarrow m$ $(Rr) = 0$ then $(PC) \leftarrow (PC) + 2$				Decrements the contents of register R_r by 1. Jumps to address m of the current page when the result is not 0, otherwise the next instruction is executed.
n.	JC m	1 1 1 1 m ₇ m ₈ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	F 6 m	2	2	(C)=1 then $(PC_0 \sim PC_7) \leftarrow m$ (C)=0 then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page if the carry flag C is 1, otherwise the next instruction is executed.
	JNC m	1 1 1 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	E 6 m	2	2	(C) = 0 then $(PC_0 \sim PC_7) \leftarrow m$ (C) = 1 then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page if the carry flag C is 0, otherwise the next instruction is executed.
	JZ m	1 1 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	C 6 m	2	2	(A) = 0 then $(PC_0 \sim PC_7) \leftarrow m$ (A) = 0 then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when the contents of register A are 0, otherwise the next instruction is executed.
	JNZ m	1 0 0 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	9 6 m	2	2	$(A) \pm 0$ then $(PC_0 \sim PC_7) \leftarrow m$ $(A) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when the contents of register A are not 0, otherwise the next instruction is executed.
	JTO m	0 0 1 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	3 6 m	?	2	$(T_0) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_0) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag $T_{\rm 0}$ is 1 otherwise the next instruction is executed.
	JNTO m	0 0 1 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	2 6 m	2	2	$(T_0) = 0$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_0) = 1$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag ${\sf T_0}$ is 0, otherwise the next instruction is executed.
	JT1 m	O 1 O 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	5 6 m	2	2	$(T_1) = 1$ then $(PC_0 - PC_7) \leftarrow m$ $(T_1) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag T_1 is 1. otherwise the next instruction is executed.
	JNT1 m	0 1 0 0 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	4 6 m	2	2	$(T_1) = 0$ then $(PC_0 \sim PC_7) \leftarrow m$ $(T_1) = 1$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag T_1 is 0, otherwise the next instruction is executed.
	JF0 m	1 0 1 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	B 6	2	2	$(F_0) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(F_0) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag ${\sf F}_0$ is 1.
	JF1 m	0 1 1 1 m ₇ m ₆ m ₅ m ₄	0 1 1 0 m ₃ m ₂ m ₁ m ₀	7 6 m	2	2	$(F_1) = 1$ then $(PC_0 \sim PC_7) \leftarrow m$ $(F_1) = 0$ then $(PC) \leftarrow (PC) + 2$				Jumps to address m of the current page when flag F_1 is 1.
	CLR C	1 0 0 1	0 1 1 1	9 7	1	1	(C) ← 0	0			Clears the carry flag C, resets it to 0. AC is not affected.
	CPL C	1010	0 1 1 1	A 7	1	1	(C) ← (C)	0			Complements the carry flag C. AC is not affected.
Flag control	CLR Fo	1 0 0 0	0 1 0 1	8 5	1	1	(F ₀) ← 0				Clears the flag F ₀ , resets it to 0.
Flago	CPL Fo	1 0 0 1	0 1 0 1	9 5	1	1	$(F_0) \leftarrow (\overline{F}_0)$				Complements the flag F ₀ .
	CLR F1	1 0 1 0	0 1 0 1	A 5	1	1	(F ₁) ← 0				Clears flag F ₁ resets it to 0.
	CPL F1	1 0 1 1	0 1 0 1	B 5	1	1	(F1) ← (F 1)				Complements the flag F_1 .

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

Item		In	struction code		SS	83		E	ffect	ed /	_		
Type	Mnemonic	D7 D6 D5 D4	D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Bytes	Cycles	Function	С	AC	Note	Description		
	CALL m	m ₁₀ m ₉ m ₈ 1	0 1 0 0 m ₃ m ₂ m ₁ m ₀	1 4 + (m ₈ ~m ₁₀) ×2 m	2	2	$\begin{split} & ((SP)) \leftarrow (PC) \; (PSW_4 \sim PSW_7) \\ & (SP) \leftarrow (SP) + 1 \\ & (PC_{0-10}) \leftarrow m \\ & (PC_{11}) \leftarrow MBF \end{split}$				Calls subroutine from address m. The program counter and the 4 high-order bits of the PSW are stored in the address indicate by the stack pointer (SP). The SP is incremented by 1 and m is transferred to PC0^PC10 and the MBF is transferred to PC11.		
Subroutine call	RET	1000	0 0 1 1	83	1	2	(SP) ← (SP)-1 (PC) ← ((SP))				The SP is decremented by 1. The program counter is restored to the saved setting in the stack indicated by the stack pointer. The PSW is not changed and interrupt disabled is maintained.		
	RETR	1001	0 0 1 1	93	- 1	1 2 (SP) ← (SP) − 1 (PC) (PSW4~PSW7) ← ((SP))					The SP is decremented by 1. The program counter and the 4 high-order bits of the PSW are restored with the saved data in the stack indicated by the stack pointer. The interrupt becomes enabled after the execution is completed.		
	IN A, Pp	0000	1 O P1 P0	08 + p	1	2	$(A) \leftarrow (Pp)$ $p = 1 \sim 2$				Loads the contents of Pp to register A.		
	OUTL Pp, A	0 0 1 1	1 O P1P0	3 8 + p	1	2	(Pp) ← (A) p=1~2				Output latches the contents of register A to Pp		
	ANL Pp, #n	1 0 0 1 n ₇ n ₆ n ₅ n ₄	1 0 p ₁ p ₀ n ₃ n ₂ n ₁ n ₀	9 8 p n	2	2	(Pp)←(Pp)Λ n p = 1 ~ 2				Logical ANDs the contents of P_p and data n. Outputs the result to P_p		
	ORL Pp, #n	1 0 0 0 n ₇ n ₆ n ₅ n ₄	1 0 p ₁ p ₀ n ₃ n ₂ n ₁ n ₀	8 8 + p n	2	2	(Pp)←(Pp)V n p=1~2				Logical ORs the contents of P_{p} and data in. Outputs the result to P_{p}		
	INS A, BUS (Note 2)	0 0 0 0	1000	08	1	2	(A) ← (BUS)				Enters the contents of data bus (port 0 to register A		
	OUTL BUS, A (Note 2)	0000	0 0 1 0	0 2	1	2	(BUS) ← (A)				Output latches the contents of register A data to data bus (port 0)		
	ANL BUS, #n (Note 2)	1 0 0 1 n ₇ n ₆ n ₅ n ₄	1 0 0 0 n ₃ n ₂ n ₁ n ₀	9 8 n	2	2	(BUS) ← (BUS) ∧ n				Logical ANDs the contents of data bu (port 0) and data n. Outputs the result to data bus (port 0)		
nput/Output	ORL BUS, #n (Note 2)	1 0 0 0 n ₇ n ₆ n ₅ n ₄	1 0 0 0 n ₃ n ₂ n ₁ n ₀	8 8 n	2	2	(BUS) ← (BUS) V n				Logical ORs the contents of data bus (por 0) and data n. Outputs the result to dat bus (port 0)		
Input/	IN A, DBB (Note 3)	0010	0010	2 2	1	1	(A) ← (DBB)				Enters the contents of data bus buffe (DBB) in register A.		
	OUT DBB, A (Note 3)	0000	0 0 1 0	02	1	1	(DBB) ← (A)				Outputs the contents of register A to dat bus buffer (DBB). OBF is set.		
	MOVD A, Pp	0000	1 1 P ₁ P ₀	O C + P1P0	1	2	$(A_0 \sim A_3) \leftarrow (Pp_0 \sim Pp_3)$ $(A_4 \sim A_7) \leftarrow 0 p = 4 \sim 7$				Inputs the contents of P _p to the low-order 4 bits of register A and inputs 0 P _p 's used for multiplying 8243		
	MOVD Pp, A	0 0 1 1	1 1 P1 P0	3 C + P1P0	1	2	$(Pp_0 \sim Pp_3) \leftarrow (A_0 \sim A_3)$ p = 4 \sim 7				Outputs the low-order 4 bits of register A to P _p . Outputs the low-order 4 Correspondence to p ₂ ,		
	ANLD Pp, A	1 0 0 1	1 1 p ₁ p ₀	9 C + P1P0	1	2	$(Pp_0 \sim Pp_3) \leftarrow (Pp_0 \sim Pp_3) \land (A_0 \sim A_3)$ p = 4 \sim 7				Logical ANDs the 4 low- order bits of register A and the contents of P_p . P_p contains the result. Phonomer Pp = 10		
	ORLD Pp, A	1000	1 1 p ₁ p ₀	8 C + P1P0	1	1 2 $(Pp_0 \sim Pp_3) \leftarrow (Pp_0 - Pp_3) \vee (A_0 \sim A_3)$ $p = 4 \sim 7$				Logical ORs the 4 low- order bits of register A and the contents of P _p . P _p contains the result.			

MITSUBISHI MICROCOMPUTERS MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Item		Instruction cod	code		8			ffecte carry		
Type	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexa- decimal	Bytes	Cycles	Function	С	AC	Note	Description
	EN I	0000 0101	0 5	. 1	1	(INTF) ← 1				Enables outside interrupt.
	DISI	0 0 0 11 0 1	1 5	1	1	(INTF) ← 0				Disables outside interrupt.
	SEL RBo	1 1 0 0 0 1 0 1	C 5	1	1	(BS) ← 0				Selects working register bank 0.
	SEL RB1	1 1 0 1 0 1 0 1	D 5	1	1	(BS) ← 1				Selects working register bank 1.
Control	SEL MB ₀ (Note 2)	11100101	E 5	1	1	(MBF) ← 0				Selects memory bank 0.
	SEL MB ₁ (Note 2)	11110101	F 5	1	1	(MBF) ← 1				Selects memory bank 1.
	ENTO CLK (Note 2)	0111 0101	7 5	1	1				-	Enables output of clock signal from terminal T_0
	EN DMA (Note 3)	1 1 1 0 0 1 0 1	E 5	1	1					Enables DMA hand shake lines.
	EN FLAGS (Note 3)	1111 0101	F 5	1	1	(P2 ₄)←(OBF) (P2 ₅)←(IBF)				Enables interrupts from master.
	MOV A, T	0100 0010	4 2	1	1	(A) ← (T)				Transfers the contents of timer/event counter to register A.
	MOV T, A	0110 0010	6 2	1	1	(T) ← (A)				Transfers the contents of register A to timer/ event counter.
ontrol	STRT T	0101 0101	5 5	1	1					Starts timer operation of timer/event counterm. Minimum count cycle is 80µs.
Timer/event counter control	STRT CNT	0100 0101	4 5	1	1					Starts operation as event counter of time/ event counter. Counts up when terminated T_1 changes to input high-level for input low-level. Minimum count cycle is 7.5 μ s.
Timer/eve	STOP TONT	0110 0101	6 5	1	1					Stops operation of timer or event counter.
	EN TCNTI	0010 0101	2 5	1	1	(TONTF) ← 1				Enables interrupt of timer/event counter.
	DIS TCNTI	00110101	3 5	1	1	(TCNTF) ← 0				Disables interrupt of timer/event counter. Resets interrupt flip-flop of CPU which is set during the CPU stands-by. Timer overflow flag isn't affected.
Misc.	NOP	0000 0000	0 0	1	1					No operation. Execution time is 1 cycle.

Note 1: Executing an instruction may produce a carry (overflow or underflow). The carry may be disregarded (lost) or it may be transferred to C/AC (saved). The saving of a carry is not shown in the function equations, but is instead shown in the carry columns C and AC. The detail affection of carries for instructions ADD ADDC and DA is as follows:

- (C) \leftarrow 1 at overflow of the accumulator is produced.
- (C) \leftarrow 0 at no overflow of the accumulator is produced.
- (AC) ← 1 at overflow of the bit 3 of the accumulator.
- (AC) ← 0 at no overflow.
- $2:\ \ These\ instructions\ are\ available\ in\ M5L8039P,\ M5L8048-XXXP,\ M5L8049-XXXP\ and\ M5L8748S.$
- 3: These instructions are available only in M5L8041A-XXXP.
- 4: The contents of ST₄~ST₇ is read when the host computer reads the status of M5L8041A-XXXP.

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

Symbol	Details	Symbol	Details
A	8-bit register (accumlator)	PC	Program counter
A ₀ ~ A ₃	The low-order 4 bits of the register A	PC0~PC7	The low-order 8 bits of the program counter
A4~A7	The high-order 4 bits of the register A	PC8~PC10	The high-order 3 bits of the program counter
$A_0 \sim A_n, A_{n+1}$	The bits of the register A	PSW	Program status word
b	The value of the bits 5~7 of the first byte machine code		
b7b6b5	The bits 5~7 of the first byte machine code	Rr	Register designator
BS	Register bank select	r	Register number
BUS	Corresponds to the port 0 (bus I/O port)	r ₀	The value of bit 0 of the machine code
		r ₂ r ₁ r ₀	The value of bits 0~2 of the machine code
AC)	Auxiliary carry flag	S2S1S0	The value of bits 0~2 of the stack pointer
С	Carry flag	SP	Stack pointer
DBB	Data bus buffer	ST4-ST7	Bits 4~7 of the status register
		STS	System status
F ₀	Flag 0	т	Timer/event counter
F ₁	Flag 1	T ₀	Test pin 0
INTF	Interrupt flag	T ₁	Test pin 1
IBF	Input buffer full flag	TONTE	Timer/event counter overflow interrupt flag
m	The value of the 11-bit address	TF	Timer flag
m ₇ m ₆ m ₅ m ₄ m ₃ m ₂ m ₁ m ₀ m ₁₀ m ₉ m ₈ (M (A))	The second byte (low-order 8 bits) machine code of the 11-bit address The bits 5~7 of the first byte (high-order 3 bits) machine code of the 11-bit address The content of the memory location addressed by the register A	#	Symbol to indicate the immediate data
(M (Rr))	The content of the memory location addressed by the register Rr	@	Symbol to indicate the content of the memory location addressed by the register
(Mx(Rr)) MBF	The content of the external memory location addressed by the register Rr Memory bank flag	←	Shows direction of data flow Exchanges the contents of data
n	The value of the immediate data		Contents of register, memory location or flag
n ₇ n ₆ n ₅ n ₄ n ₃ n ₂ n ₁ n ₀	The immediate data of the second byte machine code	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Logical AND
OBF	Output buffer full flag	V	Inclusive OR
		₩	Exclusive OR
p	Port number	_	Negation
Pp	Port designator	0	Content of flag is set or reset after execution
P1P0	The bits of the machine code corresponding to the port number		23 3

MITSUBISHI MICROCOMPUTERS MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Instruction Code List (M5L8039P, M5L8048-XXXP, M5L8049-XXXP, M5L8748S)

)7~D4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D3~D0	Hexa- decimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0	NOP	INC @R0	XCH A, @ R0	XCHD A, @ R0	ORL A, @ R0	ANL A, @ R0	ADD A, @ R0	ADDC A, @ R0	MOVX A, @ R0	MOVX @R0, A	M0V @ R0, A	MOV @R0, #n		XRL A, @ R0		M0 V A, @ R0
0001	1		INC @R1	XCH A, @ R1	XCHD A, @ R1	ORL A, @ R1	ANL A, @ R1	ADD A, @ R1	ADDC A, @ R1	MOVX A, @R1	MOVX @R1, A	M0V @ R1, A	MOV @R1,#n		XRL A, @ R1		M0V A, @ R1
0010	2	OUTL BUS,A	JB0 m		J81 m	MOV A. T	JB2 m	MOV T, A	JB3		J84 m		J85		J86		J87 m
0011	3	ADD A. #n	ADDC A. #n	MOV A, #n		ORL A. #n	ANL A.#n			RET	RETR	MOVP A, @A	JMPP @A		XAL A. #n	MOVP3 A, @A	
0100	4	JMP 0XX	GALL OXX	JMP 1XX	CALL 1XX	JMP 2XX	CALL 2XX	JMP 3XX	CALL 3XX	JMP 4XX	GALL 4XX	JMP 5 X X	CALL 5XX	JMP 8XX	CALL 6XX	JMP 7XX	CALL 7XX
0101	5	EN	DIS	EN TONTI	DIS TCNTI	STRT CNT	STRT	STOP TCNT	ENTO CLK	CLR FO	CPL FO	CLR F1	CPL F1	SEL RBO	SEL RB1	SEL MB0	SEL MB1
0110	6		JTF m	OTAL m	JTO m	JNT1 m	JT1 m	,	JF 1	JNI m	JNZ m		JFO m	JZ m		JNC	m 1C
0111	7	DEC A	INC A	CLR A	CPL A	SWAP A	DA A	RRC A	RR A		CLR C	CPL C		MOV A,PSW	MOV PSW, A	RL A	RLC A
1000	8	INS A.BUS	INC R0	XCH A, R0		ORL A, R0	ANL A, R0	ADD A, R0	ADDC A, R0	ORL BUS,#n	ANL BUS.#n	MOV Ro, A	MOV R0, #n	DEC R0	XRL A, R0	DJNZ Ro, m	MOV A, R0
1001	9	IN A, P1	INC R1	XCH A, R1	OUTL P1, A	ORL A, R1	ANL A, R1	ADD A, R1	ADDC A,R1	0RL P1, #n	ANL P1, #n	M 0V R1, A	MOV R1, #n	DEC R1	XRL A, R1	DJNZ R1, m	M0V A, R1
1010	A	IN A, P2	INC R2	XCH A, R2	OUTL P2, A	ORL A.R ₂	ANL A, R2	ADD A, R2	ADDC A, R2	ORL P2, #n	ANL P2, #n	MOV R2, A	MOV R2, # n	DEC R2	XRL A, R2	OJNZ R2, m	MOV A, R2
1011	В		INC R3	XCH A, R3		ORL A, R3	ANL A, R3	ADD A, R3	ADDC A, R3			MOV R3, A	MOV Fi3, # n	DEC R3	XRL A, R3	DJNZ R3, m	MOV A, R3
1100	С	MOVD A, P4	INC R4	XCH A, R4	MOVD P4, A	ORL A, R4	ANL A, R4	ADD A,R4	ADDC A, R4	ORLD P4, A	ANLD P4, A	M 0V R 4 , A	MOV R4, # n	DEC R4	XRL A, R4	DJNZ R4, m	MOV A, R4
1101	D	MOVD A, P5	INC R5	XCH A, R5	MOVD P5, A	ORL A, R5	ANL A, R5	ADD A, R5	ADDC A, R5	ORLD P5, A	ANLD P5, A	MOV R5, A	MOV R5, #n	DEC R5	XRL A, R5	DJNZ R5, m	MOV A, R5
1110	E	MOVD A, P6	INC R6	XCH A, R6	MOVD P6, A	ORL A, R6	ANL A, R6	ADD A, R6	ADDC A, R6	ORLD P6, A	ANLD R6, A	MOV P6, A	MOV R6, # n	DEC R6	XRL A, R6	DJNZ R6, m	MOV A, R6
1111	F	MOVD A, P7	INC R7	XCH A, R7	MOVD P7, A	ORL A, R7	ANL A, R7	ADD A, R7	ADDC A,R7	ORLD P7, A	ANLD P7,A	M 0 V R7, A	MOV R7, # n	DEC R7	XRL A, R7	DJNZ R7, m	MOV A, R7

2-byte, 2-cycle instruction
1-byte, 2-cycle instruction

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

FUNCTION OF MELPS 8-48 MICROCOMPUTERS

Instruction Code List (M5L8041A-XXXP)

	07~D4	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D3~D0	Hexa- decimal	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0000	0	NOP	INC @ R0	XCH A, @ R0	XCHD A,@R0	ORL A, @ R0	ANL A, @ R0	ADD A, @ R0	ADDC A, @ R0		MOV STS.A	MOV @R0, A	MQV @R0,#n		XRL A, @R0		MOV A, @ R0
0001	1		INC @R1	XCH A, @ R1	XCHD A, @ R1	ORL A, @ R1	ANL A, @ R1	ADD A, @ R1	ADDC A, @R1			M0V @R1, A	MOV @R1,#n		XRL A, @R1		MOV A, @R1
0010	2	OUT DBB.A	JB0 m	IN A.DBB	JB1 m	MOV A, T	J82 m	MOV T, A	JB3 m		JB4 m		JØ 5 m		JB 6 m		JB7 m
0011	3	ADD A, #n	ADDC A, #n	MOV A, #n		ORL A, #n	ANL A, #n			RET	RETR	MOVP A, @A	JMPP @A		XRL A, #n	MOVP3 A, @A	
0 100	4	JMP OXX	CALL OXX	JMP 1XX	GALL 1XX	JMP 2XX	CALL 2XX	JMP 3XX	CALL 3XX	JMP 4XX	CALL 4XX	JMP 5XX	CALL 5XX	JMP 8XX	CALL 6XX	JMP 7XX	CALL 7XX
0101	5	EN I	DIS I	EN TONTI	DIS TONTI	STRT CNT	STRT T	STOP		CLR FO	CPL FO	CLR F1	CPL F1	SEL RBO	SEL RB1	EN DMA	EN FLAGS
0110	6		JTF m	JNT0 m	OTL m	JNT1 m	JT1 m		JF1 m	JOBF m	JNZ m		JF0 m	JZ m	JNIBF	JNC m	JC m
0111	7	DEC A	INC A	CLR A	CPL A	SWAP A	DA A	RRC A	RR A		CLR C	CPL C		MOV A,PSW	MOV PSW. A	RL A	RLC A
1000	8		INC R0	XCH A, R0		ORL A, R0	ANL A, R0	ADD A, R0	ADDC A, R0			M0 V R0, A	MOV Ro, #n	DEC R0	XRL A, R0	DJNZ R0, m	M0 V A, R0
1001	9	IN A,P1	INC R1	XCH A,R1	OUTL P1, A	ORL A,R1	ANL A,R1	ADD A,R1	ADDC A,R1	0AL P1, #n	ANL P1,#n	MOV R1, A	MOV R1, #n	DEC R1	XRL A,R1	DJNZ R1,m	M0V A,R1
1010	А	IN A, P2	INC R2	XCH A, R2	OUTL P2, A	ORL A, R2	ANL A, R2	ADD A, R2	ADDC A,R2	ORL P2, #n	ANL, R2, # n	MOV R2, A	MOV R2, #n	DEC R2	XRL A, R2	DJNZ R2, m	M0 V A, R2
1011	В		INC R3	XCH A, R3		ORL A, R3	ANL A, R3	ADD A,R3	ADDC A, R3			MOV R3, A	MOV R3, # n	DEC R3	XRL A, R3	DJNZ R3, m	M 0V A, R3
1100	С	MOVD A, P4	INC R4	XCH A,R4	MOVD P4, A	ORL A, R4	ANL A, R4	ADD A, R4	ADDC A, R4	ORLD P4, A	ANLD P4, A	MOV R4, A	MOV R4, # n	DEC R4	XRL A.R4	DJNZ R4, m	MOV A, R4
1101	D	MOVD A,P5	INC R5	XCH A, R5	MOVD P5, A	ORL A, R5	ANL A, R5	ADD A, R5	ADDC A, R5	ORLD P5, A	ANLD P5, A	MOV R5, A	MOV R5, #n	DEC R5	XRL A, R5	DJNZ RS, m	MOV A, R5
1110	E	MOVD A, P6	INC R6	XCH A, R6	MOVD P6, A	ORL A, R6	ANL A, R6	ADD A, R6	ADDC A, R6	ORLD P6, A	ANLD P6, A	MOV R6, A	MOV R6, #n	DEC R6	XRL A, R6	DJNZ R6, m	MOV A, R6
1111	F	MOVD A, P7	INC R7	XCH A, R7	MOVD P7, A	ORL A,R7	ANL A, R7	ADD R7, A	ADDC A, R7	ORLD P7, A	ANLD P7, A	MOV R7, A	MOV 87, #n	DEC R7	XRL A, R7	DJNZ A7, m	M0V A, R7

2-byte 2-cycle instruction

MITSUBISHI MICROCOMPUTERS MELPS 8-48 MICROCOMPUTERS

DEVELOPMENT OF MASK-PROGRAMMABLE ROMS

GENERAL INFORMATION

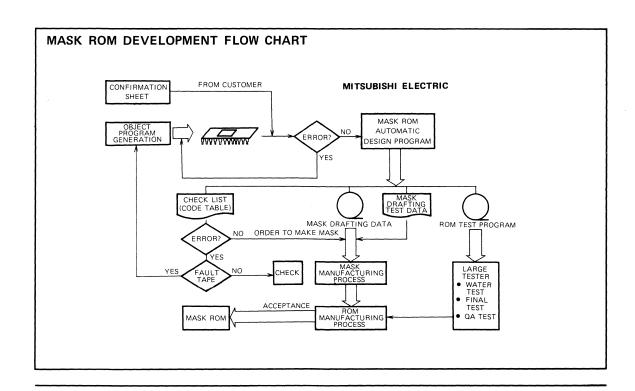
This information explains how to specify the object program for the automatic design system for mask ROMs. This system for mask ROM production has been developed to accept a customer's object program specifications for the automatic design system for a mask ROM.

The main segments of the automatic design system are:

- 1. The plotter instructions for mask production.
- A check list for verifing that the customer's specifications have been met.
- A test program to assure that the production ROMs meet specifications.

An EPROM in which a program is stored is used for a customer's specifications. A separate (set of) EPROM(s) should be produced for each object program.

Three sets of EPROM(s) should be supplied with the confirmation material.


EPROM SPECIFICATIONS

- The Mitsubishi M5L2708K, M5L2716K, M5L2732K or M5L8748S are standard, but Intel 2708, 2716, 2732, 8748 or equivalent devices may be used.
- The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.

- All the data stored in the EPROM are considered as valid and processed to make masks.
- 4. The object program specifications should be stored on each of a set of 3 EPROMs. During the mask ROM development, the data from each address of the 3 EPROMs are compared. If 2 or 3 of the 3 values compared are equal, the value will be considered valid and programmed into mask ROM. If the 3 values are all different, it is an error condition and the mask ROM is not produced.

ITEMS TO CONFIRM FOR ORDERING

- Specify the type number M5L8048-XXXP or M5L8049-XXXP. The 3-digit number XXX will be assigned by Mitsubishi.
- 2. Cleary indicate the type number of EPROM and address designation letter symbols A and B on the supplied EPROMs. For the M5L8049-XXXP, 2 sets of EPROMs are required when the object program is contained in M5L2708K EPROMs or equivalent devices. To identify these 2 sets of EPROMs, address designation letter symbols A and B are used which are specified in the confirmation material.

MITSUBISHI MICROCOMPUTERS

MELPS 8-48 MICROCOMPUTERS

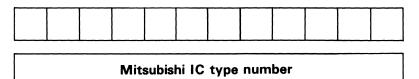
DEVELOPMENT OF MASK-PROGRAMMABLE ROMs

MELPS 8-48 MASK-PROGRAMMABLE ROM CONFIRMATION MATERIAL

SINGLE-CHIP 8-BIT MICROCOMPUTERS M5L8048-XXXP, M5L8049-XXXP

MITSUBISHI ELECTRIC

0			Signature
Customer			
Company name		_	
			Prepared
Company address		Tel	
Company contact		_ Date	
Company Contact			Approved


The single-chip microcomputer type number to order and the type of EPROMs to be supplied should be specified by checking $\sqrt{\ }$ in the boxes. Three sets of EPROMs should be supplied.

EPROM type number Single-chip microcomputer type number	2708	2716	2732	8748
☐ M5L8048—XXXP	☐ A(000 ₁₆ ~3FF ₁₆)	☐ A(000 ₁₆ ~3FF ₁₆)	☐ A(000 ₁₆ ~3FF ₁₆)	□ A(000 ₁₆ ~3FF ₁₆)
☐ M5L8049—XXXP	A(000 ₁₆ ~3FF ₁₆) B(400 ₁₆ ~7FF ₁₆)	□ A (000 ₁₆ ~7FF ₁₆)	☐ A(000 ₁₆ ~7FF ₁₆)	_

- Note 1: The high-level data of both data outputs and address inputs of the supplied EPROM will be programmed as '1', and low-level as '0'.
 - 2: Cleary indicate the type number of EPROMs and address designation letter symbols A and B on the supplied EPROMs.
 - 3: The data of the addresses in parenthesises on the EPROM are programmed onto the ROM.
 - 4: The data from each PROM in the set is compared and if 2 of the 3 are equal, the equal value will be programmed into the ROM. When the 3 values are different programming is halted and the customer is notified of the error. The error report will show the address and data.

CUSTOMER'S IDENTIFICATION MARK

If you require a special identification mark, please specify in the following format.

- Note 5 A mark field should start with the box at the extreme right
 - 6 The identification mark should be no more than 12 characters consisting of alphanumeric characters (except J.I. and O) or dashes

COMMENTS

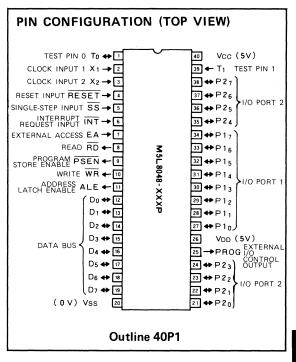
M5L8048-XXXP

SINGLE-CHIP 8-BIT MICROCOMPUTER

DESCRIPTION

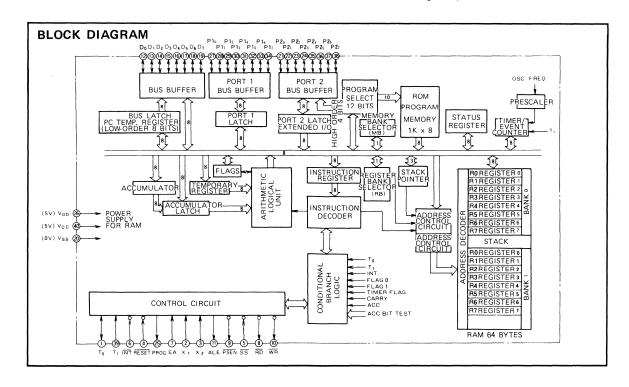
The M5L8048-XXXP is an 8-bit parallel microcomputer frabricated on a single chip using high-speed N-channel silicon-gate ED-MOS technology.

FEATURES


•	Single 5V power supply
•	Instruction cycle 2.5µs (min)
•	Basic machine instructions: 96
	1-byte instructions: 68
	2-byte instructions: 28
•	Direct addressing up to 4096 bytes
•	Internal ROM1024 bytes
•	Internal RAM 64 bytes
•	Built-in timer/event counter 8 bits
•	I/O Ports
•	Easily expandable Memory and I/O:
•	Subroutine nesting 8 levels
•	External and timer/event counter interrupt . 1 level each
•	Low power standby mode:
•	External RAM

APPLICATION

Control processor or CPU for a wide variety of applications


• Interchangeable with Intel's P8048 in pin configura-

tion and electrical characteristics

FUNCTION

The M5L8048-XXXP LSI is an integrated 8-bit CPU, with memory (ROM, RAM) and timer/event counter interrupt all contained on a single chip.

M5L8048-XXXP

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or Output	Function
Vss	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
VDD	Power supply		① Connected to 5V power supply. ② Used for memory hold when V _{CC} is cut.
PROG	Program	Output	Strobe signal for M5L8243P I/O Expander.
P10~P17	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port. After reset, when not used as an output port nothing can be output.
		Input/output	① The same as port 1.
P2 ₀ ~P2 ₇	Port 2	Output	P2 ₀ ~P2 ₃ output the high-order 4 bits of the program counter when using external program memory.
		Input/output	③ P2 ₀ ~P2 ₃ serve as a 4-bit I/O expander bus for the M5L8243P.
			① Provides true bidirectional bus transfer of instructions and data between the CPU and external memory. Synchronizing is done with signals RD/WR. The output data is latched.
Do~D7	Data bus	Input/output	② When using external program memory the output of the low-order 8 bits of the program counter are synchronized with ALE. After that the transfer of the instruction code or data from external program memory is synchronized with PSEN.
			(3) The output of addresses for data using external data memory is synchronized with ALE. After that the transfer of data with the external data memory is synchronized with RD/WR. (MOVX A, @Rr and MOVX @Rr, A)
T ₀	Test pin 0	Input	① Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JTO m and JNTO m)
		Output	② Used for outputting the internal clock signal. (ENTO CLK)
Т1	Test pin 1	Input	Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JT1 m and JNT1 m) When enabled event signals are transferred to the timer/event counter. (STRT CNT)
ĪNT	Interrupt	Input	Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JN1 m) Used for external interrupt to CPU.
RD	Read control	Output	Read control signal used when the CPU requests data from external data memory or ex- ternal devices to be transferred to the data bus. (MOVX A, @Rr and INS A, BUS)
WR	Write control	Output	Write control signal used when the CPU sends data through the data bus to external data memory or external device. (MOVX @R, A and OUTL BUS, A)
RESET	Reset	Input	Control used to initialize the CPU.
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
PSEN	Program store enable	Output	Strobe signal to fetch external program memory,
SS	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single step mode.
EA	External access	Input	Normally maintained at 0V. When the level is raised to 5V, external memory will be accessed even when the address is less than 400 ₁₆ (1024).
X ₁ , X ₂	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals. An external clock signal can be input through X_1 or X_2 .

M5L8048-XXXP

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5-7	V
V _{DD}	Supply voltage		-0.5~7	V
Vı	Input voltage	With respect to V _{SS}	-0.5-7	V
Vo	Output voltage		-0.5-7	V
Pd	Power dissipation	Ta = 25 ℃	1.5	W
Topr	Operating free-air temperature range		0 ~ 70	C
Tstg	Storage temperature range		−65∼150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70 \, ^{\circ}\text{C}$, unless otherwise noted)

Symbol	Parameter		Limits			
	rarametei	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	V	
V_{DD}	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage		0		V	
VIH1	High-level input voltage, except X1, X2 and RESET	2		Vcc	V	
V _{IH2}	High-level input voltage, except X1, X2 and RESET	3.8		Vcc	٧	
VIL	Low-level input voltage	-0.5		0.8	V	

ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=V_{DD}=5V ± 10%, V_{SS}=0V, unless otherwise noted)

Symbol	Parameter			Limits		
		Test conditions	Min	Тур	Max	Unit
VoL	Low-level output voltage, BUS, RD, WR, PSEN, ALE	IOL=2mA			0.45	V
V _{OL1}	Low-level output voltage, except the above and PROG	I _{OL} = 1.6mA			0.45	V
V _{OL2}	Low-level output voltage, PROG	I _{OL} = 1mA			0.45	V
Vон	High-level output voltage, BUS, RD, WR, PSEN, ALE	I _{OH} = - 100 μA	2.4			٧
V _{OH1}	High-level output voltage, except the above	$I_{OH} = -50\mu A$	2.4			V
LIL	Input leak current, T1, INT	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μΑ
loL	Output leak current, BUS, T0 high-impedance state	V _{SS} +0.45≦V _{IN} ≦V _{CC}	- 10		10	μΑ
Lin	Input current during low-level input, port	V _{IL} =0.8V		-0.2		mA
I _{LI2}	Input current during low-level input, RESET, SS	V _{IL} =0.8V		-0.05		mA
I _{DD}	Supply current from V _{DD}			10	20	mA
IDD+ICC	Supply current from V _{DD} and V _{CC}			65	135	mA

$\textbf{TIMING REQUIREMENTS} \text{ ($Ta=0$$ $\sim 70^{\circ}C$, $V_{CC}=V_{DD}=5$$V$ $\pm 10\%$, $V_{SS}=0$$V$, unless otherwise noted.)}$

Symbol	Parameter	Alternative		Unit		
	Talafficter	symbol	Min	Тур	Max	Omt
tc	Cycle time	toy	2.5		15.0	//S
th (PSEN-D)	Data hold time after PSEN	t DR	0		200	ns
th (R-D)	Data hold time after RD	ton	0		200	ns
tsu (PSEN-D)	Data setup time after PSEN	tro			500	ns
tsu (R-D)	Data setup time after RD	tab			500	ns
t _{SU (A-D)}	Data setup time after address	t _{AD}			950	ns
t _{SU} (PROG-D)	Data setup time after PROG	t _{PR}			810	ns
th (PROG-D)	Data hold time before PROG	tpF	0		150	ns

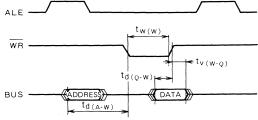
Note 1: The input voltage level of the input voltage is V_{IL} =0.45V and V_{IH} =2.4V.

SINGLE-CHIP 8-BIT MICROCOMPUTER

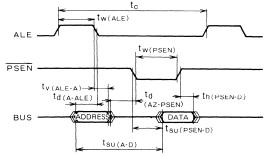
SWITCHING CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{QC} = V_{DD} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

	Parameter	Alternative		Unit		
Symbol		symbol	Min	Тур	Max	Unit
tw (ALE)	ALE pulse width	t LL	400			ns
td(A-ALE)	Delay time, address to ALE signal	tal	120			ns
tv(ALE-A)	Address valid time after ALE	t LA	80			ns
tw (PSEN)	PSEN pulse width	toc	700			ns
tw(R)	RD pulse width	too	700			ns
tw(w)	WR pulse width	toc	700			ns
td(Q-w)	Delay time, data to WR signal	t _D w	500			ns
tv(w-Q)	Data valid time after WR	t wo	120			ns
td(A-W)	Delay time, address to WR signal	t Aw	230	-		ns
td(AZ-R)	Delay time, address disable to RD signal	tafc	0			ns
td(AZ-PSEN)	Delay time, address disable to PSEN signal	t afc	0			ns
td(PC-PROG)	Delay time, port control to PROG signal	t _{CP}	110			ns
tv(PROG-PC)	Port control valid time after PROG	tpc	100			ns
tp(Q-PROG)	Delay time, data to PROG signal	t _{DP}	250			ns
tv(PROG-Q)	Data valid time after PROG	tpD	65			ns
tw(PROGL)	PROG low pulse width	t _{PP}	1200			ns
td(Q-ALE)	Delay time, data to ALE signal	t _{PL}	350			ns
tv(ALE-Q)	Data valid time after ALE	tup	150			ns

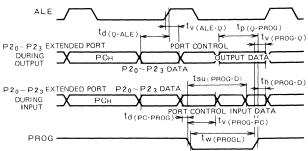
Note 2: Conditions of measurement: control output C_L =80pF


data bus output, port output $C_L=150pF$, $t_C=2.5\mu S$

3: Reference levels for the input/output voltages are low level=0.8V and high level=2V


TIMING DIAGRAM Read from External Data Memory

ALE $t_{W(R)}$ RD . td (AZ-R) th(R-D) BUS -DDRESS DATA tsu(R-D) tsu(A-D)


Write to External Data Memory

Instruction Fetch from External Program Memory

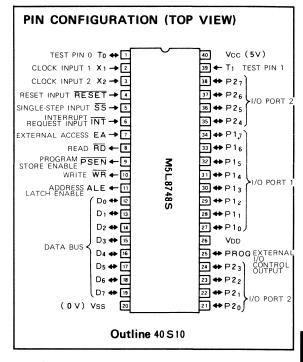
Port 2

MITSUBISHI MICROCOMPUTERS M5L8748S

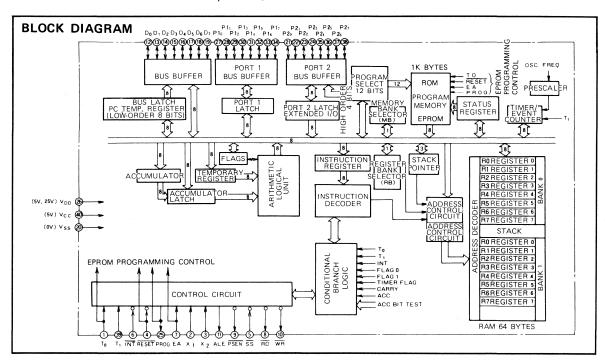
SINGLE-CHIP 8-BIT MICROCOMPUTER WITH EPROM

DESCRIPTION

The M5L8748S is an 8-bit parallel microcomputer frabricated on a single-chip using high-speed N-channel silicongate ED-MOS technology. This contains ultraviolet-light erasable and electrically reprogrammable ROM (EPROM) on a chip, so it is easy to change the program stored in the EPROM.


FEATURES

. =/ (1 01120
Single 5V power supply
• Instruction cycle 2.5μs (min)
Basic machine instructions
1-byte instructions: 68
2-byte instructions: 28
• Direct addressingup to 4096 bytes
● Internal EPROM
• Internal RAM 64 bytes
Built-in timer/event counter 8 bits
• I/O Ports
 Easily expandable memory and I/O:
• Subroutine nesting 8 levels
• External and timer/event counter interrupt . 1 level each
• External RAM
• Interchangeable with the Intel's D8748 in pin configura-


APPLICATIONS

tion and electrical characteristics

 A CPU for special repetitive processing or control for which a small number of units are to be produced.

- A debugging CPU for program, application and system design development
- A CPU for prototype and preproduction systems prior to factory-programmed mask ROM production

PIN DESCRIPTION

Pin	Name	Input or Output	Function
Vss	Ground		Normally connected to ground (0V).
Vcc	Main power supply		Connected to 5V power supply.
VDD	Program power supply		Normally connected to 5V power supply.
V 00			② When programming to EPROM, 25V is required.
PROG	Program	Input	① Used to supply 25V program pulses (50 ms width) from an outside source when programming to EPROM.
	•	Output	② Strobe signal for M5L8243P I/O Expander.
P1 ₀ ~P1 ₇	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF_{16} must first be output to this port. After reset, when not used as an output port nothing can be output.
		Input/output	① The same as port 1.
P2 ₀ ~P2 ₇	Port 2	Output	$\ensuremath{\textcircled{2}}\ \text{P2}_0\sim \text{P2}_3$ output the high-order 4 bits of the program counter when using external program memory.
		Input/output	3 P2 ₀ ~P2 ₃ serve as a 4-bit I/O expander bus for the M5L8243P.
			① Provides true bidirectional bus transfer of instructions and data between the CPU and external memory. Synchronizing is done with signals RD/WR. The output data is latched.
Do ~ D7	Data bus	Input/output	When using external program memory the output of the low-order 8 bits of the program counter are synchronized with ALE. After that the transfer of the instruction code or data from external program memory is synchronized with PSEN.
			3 The output of addresses for data using external data memory is synchronized with ALE. After that the transfer of data with the external data memory is synchronized with RD/WR. (MOVX A, @Rr and MOVX @Rr, A)
T ₀	Test pin 0	Input	① Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JTO m and JNTO m)
		Output	② Used for outputting the internal clock signal. (ENTO CLK)
т,	Test pin 1	Input	① Control signal from an external source for conditional jumping in a program, Jumping is dependent on external conditions. (JT1 m and JNT1 m)
			(2) When enabled event signals are transferred to the timer/event counter. (STRT CNT)
ĪNT	Interrupt	Input	① Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JN1 m)
			② Used for external interrupt to CPU.
RD	Read control	Output	Read control signal used when the CPU requests data from external data memory or external devices to be transferred to the data bus. (MOVX A, @Rr and INS A, BUS)
WR	Write control	Output	Write control signal used when the CPU sends data through the data bus to external data memory or external devices. (MOVX @R, A and OUTL BUS, A)
			① Control used to initialize the CPU.
RESET	Reset	Input/output	2 Latch signal for the EPROM address when programming to EPROM and for reading from EPROM (verify mode).
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
PSEN	Program store enable	Output	Strobe signal used to fetch from external program memory.
SS	Single step	Input	Control signal used in conjunction with ALE to stop program execution at the finish of each instruction, in the single step mode.
EA	External access	Input	Normally maintained at 0V. When the level is raised to 5V, external memory will be accessed even when the address is less than 400 ₁₆ (1024). When in the programming mode for the EPROM a 25V power supply must be available at this terminal.
X ₁ , X ₂	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals. An external clock signal can be input through X_1 or X_2 .

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	٧
V _{DD}	Supply voltage	1	-0.5-26.5	٧
VI	Input voltage	With respect to V _{SS}	-0.5~7	V
Vo	Output voltage, all outputs except ϕ_1 and ϕ_2		-0.5~7	V
Pd	Power dissipation	Ta = 25℃	1.5	W
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		−65~150	°C

RECOMMENDED OPERATING CONDITIONS

CPU Operation (Ta=0~70°C, unless otherwise noted)

Symbol			Limits			
	Parameter	Min	Nom	Max	Unit	
Vcc	Supply voltage	4.75	5	5.25	V	
V _{DD}	Supply voltage, except programming EPROM	4.75	5	5.25	V	
V _{DD}	Supply voltage, programming EPROM	24	25	26	V	
Vss	Supply voltage		0		V	
V _{IH1}	High-level input voltage, except X ₁ , X ₂ , RESET	2		Vcc	V	
V _{IH2}	High-level input voltage, X ₁ , X ₂ , RESET	3.8		Vcc	v	
VIL	Low-level input voltage	-0.5		0.8	V	

EPROM PROGRAMMING ($Ta = 25 \pm 5^{\circ}C$, $VCC = 5V \pm 5\%$, $VDD = 25 \pm 1V$, unless otherwise noted)

0	•		Limits			
Symbol	Parameter	Min	Nom	Max	Unit	
V _{DD} (H)	High-level program supply voltage	24.		26	V	
VDD(L)	Low-level program supply voltage	4.75	-	5.25	V	
VIH(PROG)	High-level program pulse input voltage	21.5		24.5	٧	
VIL(PROG)	Low-level program pulse input voltage			0.2	V	
VEA(H)	High-level EA input voltage	21.5		24.5	V	
VEA(L)	Low-level EA input voltage			5.25	V	

ELECTRICAL CHARACTERISTICS

 $\textbf{CPU Operation} \text{ (Ta} = 0 \sim 70 \, ^{\circ}\text{C} \text{, } V_{CC} = V_{DD} = 5 \text{V} \pm 5 \, \% \text{, } V_{SS} = 0 \text{V} \text{, unless otherwise noted)}$

Symbol	Parameter	-	Limits			Unit
	Parameter	Test conditions	Min	Тур	Max	Onne
VoL	Low-level output voltage, BUS, RD, WR, PSEN, ALE	IOL=2mA			0.45	V
V _{OL1}	Low-level output voltage, except the above and PROG	I _{OL} = 1.6mA			0.45	٧
V _{OL2}	Low-level output voltage, PROG	I _{OL} = 1mA			0.45	٧
Vон	High-level output voltage, BUS, RD, WR, PSEN, ALE	$I_{OH} = -100\mu A$	2.4			٧
V _{OH1}	High-level output voltage, except the above	$I_{OH} = -50\mu A$	2.4			٧
LIL	Input leak current, T1, INT	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μΑ
LII	Low-level input current, ports	V _{IL} =0.8V		-0.2		mA
I _{LI2}	Low-level input current, RESET, SS	V _{IL} =0.8V		-0.05		mA
IDD	Supply current from V _{DD}	Ta=25°C		10	20	mA
IDD+ICC	Supply current from V _{DD} and V _{CC}	Ta=25°C		65	135	mA

EPROM PROGRAMMING ($Ta = 25 \pm 5^{\circ}C$, $VCC = 5V \pm 5\%$, $VDD = 25 \pm 1V$, unless otherwise noted)

Symbol Parameter		T	Limits			U-ia
	Test conditions	Min	Тур	Max	Unit	
I _{DD}	Supply current from V _{DD}				30	m A
I _{IH} (PROG)	High-level input current, PROG				16	m A
lih(EA)	High-level input current, EA				1	m A

TIMING REQUIREMENTS

Read/Write of External Memory ($Ta = 0 \sim 70^{\circ}C$. $VCC = VDD = 5V \pm 5\%$. VSS = 0V, unless otherwise noted)

Symbol		Alternative		1.1-24		
	Parameter	symbol	Min	Тур	Max	Unit
tc	Cycle time	tcy	2.5		15.0	μS
th(PSEN-D)	Data hold time after PSEN	t _{DR}	0		200	ns
th(R-D)	Data hold time after RD	t _{DR}	0		200	ns
tsu(PSEN-D)	Data setup time after PSEN	t _{RD}			500	ns
tsu(R-D)	Data setup time after RD	tab			500	ns
tsu(A-D)	Data setup time after address	t _{AD}	1		950	ns

Note 1: The input voltage level is V_{IL} =0.45 and V_{IH} =2.4V.

Port 2 (Ta=0~70°C, VCC=VDD=5V \pm 5%, VSS=0V, unless otherwise noted)

Symbol Parameter		Alternative		Units		
	symbol	Min	Тур	Max	Units	
tsu (PROG-D)	Data setup time after PROG	t _{PR}			810	ns
th (PROG-D)	Data hold time after PROG	tpF	0		150	ns

Note 2: The input voltage level of the input voltage is V_{IL} = 0.45V and V_{IH} =2.4V.

EPROM PROGRAMMING (Ta=25±5℃, V_{CC}=5V±5%, V_{DD}=25V±1V, unless otherwise noted)

	Parameter	Alternative	,	Unit		
Symbol		symbol	Min	Тур	Max	Omt
tsu (A-RES)	Address setup time before RESET	t AW	4t _c			
th(RES-A)	Address hold time after RESET	twa	4t _c			
tsu (D-PROG)	Data setup time before PROG	t _{DW}	4t _c			
th (PROG-D)	Data hold time after PROG	two	4t _c			
th (To-RESH)	RESET high hold time after T ₀ (verify mode)	t _{PH}	4t _C			
tsu(V _{DD} -PROG)	V _{DD} setup time before PROG	t _{VDDW}	4t _c			
t _{h (PROG-VDD)}	V _{DD} hold time after PROG	t _{VDDH}	0			ns
tw(PROG)	PROG pulse width	tpw	50		60	ms
t _{su(To-RES)}	Setup time before RES	t _{TW}	4t _C			
t _{h (VDD-To)}	Hold time after V _{DD}	twT	4t _C			
tw (RES)	RESET pulse width	tww	4t _c			

Note 3: CPU cycle time t_c requires 5µs min.

- 4: Rise time (t_r) and fall time (t_f) of V_{DD} and PROG should be within the range of $0.5 \sim 2\mu s$.
- 5: RESET setup time for the positive-going EA requires 4 t_c min.

SWITCHING CHARACTERISTICS

Read/Write of External Memory ($Ta = 0 \sim 70 \, \text{C}$, $V_{CC} = V_{DD} = 5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted)

Symbol	Parameter	Alternative		11-1-		
Symbol		symbol	Min	Тур	Max	Unit
tw(ALE)	ALE pulse width	tuu	400			ns
td(A-ALE)	Delay time, address to ALE signal	tal	120			ns
tv(ALE-A)	Address valid time after ALE	tLA	80			ns
tw(PSEN)	PSEN pulse width	toc	700			ns
tw(R)	RD pulse width	too	700			ns
tw(w)	WR pulse width	toc	700			ns
td(Q-w)	Delay time, data to WR signal	tow	500			ns
tv(w-Q)	Data valid time after WR	two	120			ns
td(A-W)	Delay time, address to WR signal	taw	230			ns
td(AZ-R)	Delay time, address floating to RD signal	tafc	0	-		ns
td(AZ-PSEN)	Delay time, address floating to PSEN signal	TAFC	0			ns

Note 6: Conditions of measurement: control output C_L=80pF

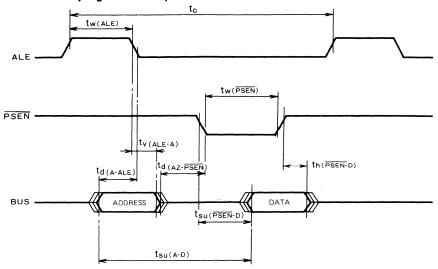
data bus output C_L=150pF, t_c=2.5µs

7: Reference level for the input/output voltage is low level=0.8V and high level=2V.

Port 2 (Ta=0~70℃, Vcc=VDD=5V±5%, Vss=0V, unless otherwise noted)

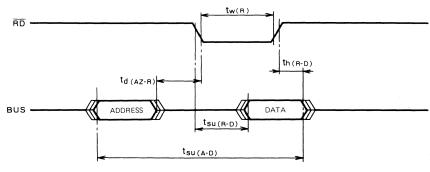
Symbol	Parameter	Alternative		Unit		
		symbol	Min	Тур	Max	Onn
td(PC-PROG)	Delay time, port control to PROG signal	top	110			ns
tv(PROG-PC)	Port control valid time after PROG	tPC	100			ns
tp(Q-PROG)	Delay time, data to PROG signal	t _{DP}	250			ns
tv(PROG-Q)	Data valid time after PROG	ten	65			ns
tw (PROGL)	PROG low-level pulse width	tpp	1200			ns
td(Q-ALE)	Delay time, data to ALE signal	tpL	350			ns
tv(ALE-Q)	Data valid time after ALE	tup	150			ns

Note 8: Condition of measurement is $C_L=150pF$, $t_c=2.5\mu s$

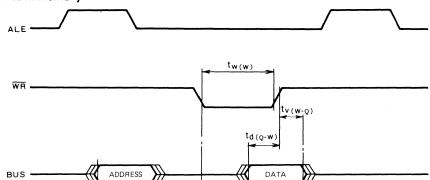

9: Reference level for the input/output voltage is low level=0.8V and high level=2V.

EPROM PROGRAMMING (Ta = 25 ± 5°C, V_{CC}= 5V ± 5%, V_{DD}= 25V ± 1V, unless otherwise noted)

Symbol	Davis	Alternative		Limits		Unit
Symbol	Parameter	symbol	Min	Тур	Max	Unit
tp(T₀-Q)	Propagation time between T_{0} and data.	t _{DO}			4tc	

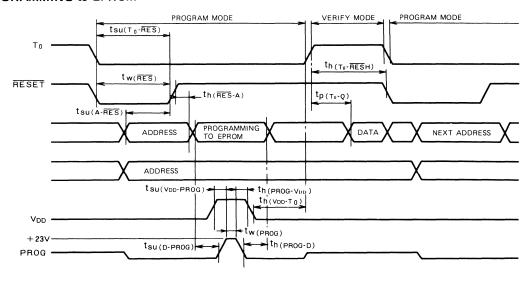

TIMING DIAGRAM

Instruction fetch from external program memory



Reading from external data memory


Writing to external data memory



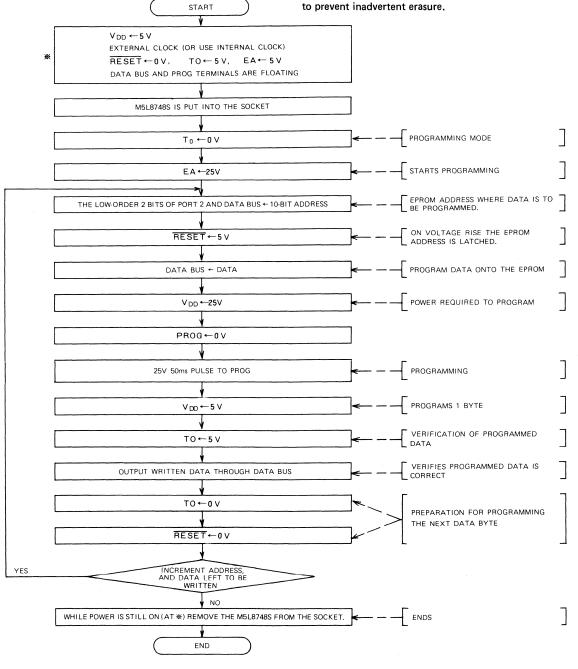
td(A-W)

Port 2

PROGRAMMING to EPROM

PROGRAMMING TO EPROM AND ERASING

Details of how to program data onto the EPROM for the M5L8748S is shown in Fig. 1. The EPROM can be erased by approximately 15 Ws/cm² of exposure to high-intensity 2537Å short-wave ultraviolet rays.


Fig. 1 Flowchart of programming onto the EPROM

For example: the S-52 ultraviolet lamp has an intensity of $17,000\mu$ W/cm² at a distance of 2.4 cm from the lamp.

The necessary exposure would be:

$$\frac{15 \text{Ws/cm}^2}{17,000 \mu \text{W/cm}^2} = 900 \text{ seconds} = 15 \text{ minutes}$$

Once data has been entered on the EPROM an opaque label should be pasted over the window of the M5L8748S to prevent inadvertent erasure.

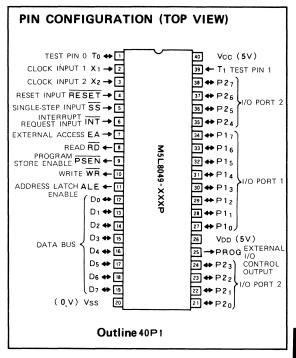
MITSUBISHI MICROCOMPUTERS M5L8049-XXXP, M5L8039P-6

SINGLE-CHIP 8-BIT MICROCOMPUTER

DESCRIPTION

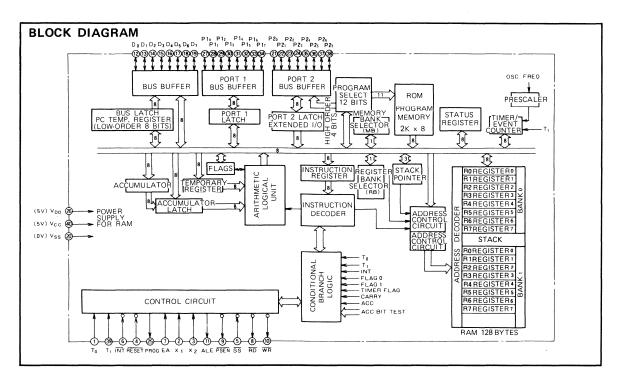
The M5L8049-XXXP and M5L8039P-6 are 8-bit parallel microcomputers frabicated on a single chip using high-speed N-channel silicon gate ED-MOS technology.

FEATURES


•	Single 5V power supply
•	Instruction cycle 2.5 μ s (min.)
•	Basic machine instructions 96
	1-byte instructions: 68
	2-byte instructions: 28
•	Direct addressing up to 4096 bytes
•	Internal ROM (for M5L8049-XXXP) 2048 bytes
•	Internal RAM128 bytes
•	Built-in timer/event counter 8 bits
•	I/O Ports
•	Easily expandable Memory and I/O:
•	Subroutine nesting 8 levels
•	External and timer/event counter interrupt . 1 level each
•	Low power standby mode
•	External RAM 256 bytes
•	$M5L8049\text{-}XXXP/M5L8039P\text{-}6 \ are \ interchangeable with}$

APPLICATION

Control processor or CPU for a wide variety of applications


ration and electrical characteristics.

Intel's P8049 (6MHz operation)/P8039-6 in pin configu-

FUNCTION

The M5L8049-XXXP and M5L8039P-6 are integrated 8-bit CPUs, with memory (ROM, RAM) and timer/event counter interrupt all contained on a single chip.

M5L8049-XXXP, M5L8039P-6

SINGLE-CHIP 8-BIT MICROCOMPUTER

PIN DESCRIPTION

Pin	Name	Input or Output	Function
Vss	Ground		Normally connected to ground (0V)
Vcc	Main power supply		Connected to 5V power supply
VDD	Power supply		① Connected to 5V power supply ② Used for memory hold when V _{CC} is cut
PROG	Program	Output	Strobe signal for M5L8243P I/O Expander
P1 ₀ ~P1 ₇	Port 1	Input/output	Quasi-bidirectional port. When used as an input port, FF ₁₆ must first be output to this port. After reset, when not used as an output port nothing can be output.
		Input/output	① The same as port 1
P2 ₀ ~P2 ₇	Port 2	Output	P2 ₀ ~P2 ₃ output the high-order 4 bits of the program counter when using external program memory
		Input/output	③ P2 ₀ ~P2 ₃ serve as a 4-bit I/O expander bus for the M5L8243P
			① Provides true bidirectional bus transfer of instructions and data between the CPU and external memory. Synchronizing is done with signals RDWR. The output data is latched.
D0~D7	Data bus	Input/output	When using external program memory the output of the low-order 8 bits of the program counter are synchronized with ALE. After that the transfer of the instruction code or data from external program memory is synchronized with PSEN.
			3 The output of addresses for data using external data memory is synchronized with ALE. After that the transfer of data with the external data memory is synchronized with RD/WR. (MOVX A, @Rr and MOVX @Rr, A)
To	Test pin 0	Input	① Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JT0 m and JNT0 m)
		Output	② Used for outputting the internal clock signal. (ENTO CLK)
Т1	Test pin 1	Input	Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JT1 m and JNT1 m) When enabled event signals are transferred to the timer/event counter. (STRT CNT)
ĪNT	Interrupt	Input	Control signal from an external source for conditional jumping in a program. Jumping is dependent on external conditions. (JN1 m) Used for external interrupt to CPU
RD	Read control	Output	Read control signal used when the CPU requests data from external data memory or external devices to be transferred to the data bus. (MOVX A, @Rr and INS A, BUS)
WR	Write control	Output	Write control signal used when the CPU sends data through the data bus to external data memory or external device, (MOVX @R, A and OUTL BUS, A)
RESET	Reset	Input	Control used to initialize the CPU.
ALE	Address latch enable	Output	A signal used for latching the address on the data bus. An ALE signal occurs once during each cycle.
PSEN	Program store enable	Output	Strobe signal to fetch external program memory,
55	Single step	Input	Control signal used in conjunction with ALE to stop the CPU through each instruction, in the single step mode.
EA	External access	Input	① Normally maintained at 0V ② When the level is raised to 5V, external memory will be accessed even when the address is less than 400 ₁₆ (2048).
X ₁ , X ₂	Crystal inputs	Input	External crystal oscillator or RC circuit input for generating internal clock signals. An external clock signal can be input through X_1 or X_2 .

MITSUBISHI MICROCOMPUTERS M5L8049-XXXP, M5L8039P-6

SINGLE-CHIP 8-BIT MICROCOMPUTER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage	With respect to Vss		٧
V _{DD}	Supply voltage			٧
Vı	Input voltage	With respect to V _{SS}	-0.5-7	٧
Vo	Output voltage		-0.5~7	٧
Pd	Power dissipation	Ta = 25 ℃	1.5	W
Topr	Operating free-air temperature range		0~70	c
Tstg	Storage temperature range		− 65 ~ 150	S

RECOMMENDED OPERATING CONDITIONS (Ta = 0~70°C, unless otherwise noted)

Symbol	Parameter		Limits			
Symbol		Min	Nom	Max	Unit	
Vcc	Supply voltage	4.5	5	5.5	٧	
V _{DD}	Supply voltage	4.5	5	5.5	V	
Vss	Supply voltage		0		· V	
V _{IH1}	High-level input voltage, except for X ₁ , X ₂ , RESET	2		Vcc	V	
V _{IH2}	High-level input voltage, X ₁ , X ₂ , RESET	3.8		Vcc	V	
VIL	Low-level input voltage	-0.5		0.8	V	

ELECTRICAL CHARACTERISTICS (Ta=0~70°C, V_{CC}=V_{DD}=5V±10%, V_{SS}=0V, unless otherwise noted)

Combal	Parameter	Conditions	Limits			
Symbol	rarameter	Conditions	Min	Тур	Max	Unit
VoL	Low-level output voltage, BUS, RD, WR, PSEN, ALE	IOL=2mA			0.45	٧
V _{OL1}	Low-level output voltage, except for the above and PROG	I _{OL} = 1.6mA			0.45	٧
V _{OL2}	Low-level output voltage PROG	I _{OL} = 1mA			0.45	V
Vон	High-level output voltage, BUS, RD, WR, PSEN, ALE	I _{OH} = - 100μA	2.4			٧
V _{OH1}	High-level output voltage, except for the above	$I_{OH} = -50\mu A$	2.4			V
LIL	Input leak current, T1, INT	V _{SS} ≦V _{IN} ≦V _{CC}	- 10		10	μА
loL	Output leak current, BUS, TO, high-impedance state	Vss+0.45≤ViN≤Vcc	- 10		10	μА
LLII	Input current during low-level input, port	V _{IL} =0.8V		-0.2		mA
I _{LI2}	Input current during low-level input, RESET, SS	V _{IL} =0.8V		-0.05		mA
I _{DD}	Supply current from V _{DD}	Ta=25℃		25	50	mA
IDD+ICC	Supply current from V _{DD} and V _{CC}	Ta=25℃		100	170	mA

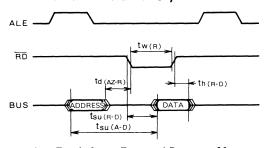
$\textbf{TIMING REQUIREMENTS} \ (\ \texttt{Ta} = 0 \ \sim \ 70 \ \texttt{\^{C}} \ , \ \ V_{CC} = V_{DD} = 5 \ \texttt{V} \ \pm \ 10\%, \ \ V_{SS} = 0 \ \texttt{V}, \ \ \text{unless otherwise noted})$

Symbol	D	Alternative		Unit		
Symbol	Parameter	symbol	Min	Тур	Max	Unit
tc	Cycle time	tcy	2.5		15.0	//S
th(PSEN-D)	Data hold time after PSEN	ton	0		200	ns
t h (R-D)	Data hold time after RD	ton	0		200	ns
tsu (PSEN-D)	Data setup time after PSEN	t RD			500	ns
t _{SU} (R-D)	Data setup time after RD	t _{RD}			500	ns
t _{su (A-D)}	Data setup time after address	tAD			950	ns
t _{SU} (PROG-D)	Data setup time after PROG	tpR			810	ns
th (PROG-D)	Data hold time before PROG	. tpf	0		150	ns

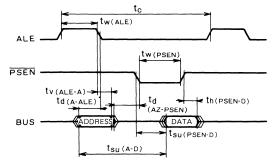
Note 1: The input voltage level of the input voltage is $V_{IL}\!=\!0.45V$ and $V_{IH}\!=\!2.4V.$

M5L8049-XXXP, M5L8039P-6

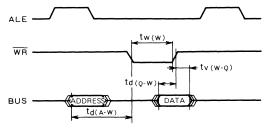
SINGLE-CHIP 8-BIT MICROCOMPUTER

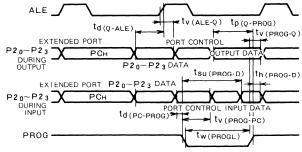

SWITCHING CHARACTERISTICS ($Ta=0\sim70$ °C. $V_{\text{C}\,\text{C}}=V_{\text{DD}}=5$ V \pm 10%. $V_{\text{SS}}=0$ V. unless otherwise noted)

		Alternative			Unit	
Symbol	Parameter	symbol	Min	Тур	Max	Unit
tw(ALE)	ALE pulse width	t LL	400			ns
td(A-ALE)	Delay time, address to ALE signal	t AL	150			ns
tv(ALE-A)	Address valid time after ALE	t LA	80			ns
tw (PSEN)	PSEN pulse width	t cc	700			ns
tw(R)	RD pulse width	toc	700			ns
tw(w)	WR pulse width	toc	700			ns
td(Q-w)	Delay time, data to WR signal	t Dw	500			ns
tv(w-Q)	Data valid time after WR	t wp	120			ns
td(A-W)	Delay time, address to WR signal	t AW	230			ns
td(AZ-R)	Delay time, address disable to RD signal	t afc	0			ns
td(AZ-PSEN)	Delay time, address disable to PSEN signal	tafc	0			ns
td(PC-PROG)	Delay time, port control to PROG signal	t _{CP}	110			ns
tv(PROG-PC)	Port control valid time after PROG	tec	130			ns
tp(Q-PROG)	Delay time, data to PROG signal	t _{DP}	220			ns
tv(PROG-Q)	Data valid time after PROG	tpD	65			ns
tw(PROGL)	PROG low pulse width	t _{PP}	1510			ns
td(Q-ALE)	Delay time, data to ALE signal	t pL	400			ns
tv(ALE-Q)	Data valid time after ALE	tup	150			ns


Note 2: Conditions of measurement: control output C_L=80pF

TIMING DIAGRAM


Read from External Data Memory


Instruction Fetch from External Program Memory

Write to External Data Memory

Port 2

 $[\]label{eq:databus} data~bus~output,~port~output~~C_L=150pF,~t_C=2.5 \mu S$ 3: Reference levels for the input/output voltages are low level=0.8V and high level=2V.

MELPS 86 MICROPROCESSORS

DESCRIPTION

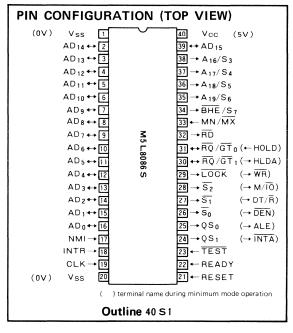
The M5L8086S is a 16-bit parallel microprocessor fabricated using high-speed N-channel silicon-gate ED-MOS techology. It requires a single 5V power supply and has a maximum basic clock rate of 5MHz.

The M5L8086S is upward compatible, both in hardware and software, with the M5L8080AP, S and M5L8085AP, S therefore it can replace either of these devices. It has higher performance because of additional and more powerful operation and addressing functions and instructions.

FEATURES

• Direct addressing:

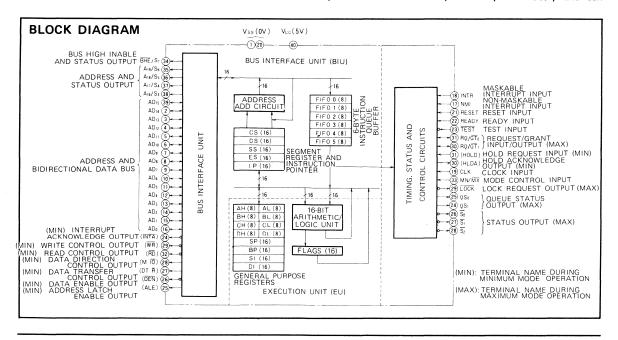
1M byte


- Instruction set upward compatible with that of M5L— 8080AP, S
- Enlarged powerful addressing: 24 modes
 On chip 16-bit registers: 14 registers
- Arithmetic operations include multiplication and division, signed or unsigned and 8-bit or 16-bit operands.
- Basic clock rate:

5MHz (max.)

- Multi-CPU functions
- Single 5V power supply
- Interchangeable with the Intel 8086 in pin configuration and electrical characteristics

APPLICATIONS


Central processing unit for 16-bit microcomputer and control units

16-BIT PARALLEL MICROPROCESSOR

FUNCTIONS

The M5L8086S has a minimum and maximum mode, which allows the composition to be selected to match the scale of the system in which it is used. The internal function consists of execution unit (EU) and bus interface unit (BIU). The BIU controls the 6-byte instruction queue, while generating addresses, and decodes instructions to be executed by the EU. Each unit operates asynchronously and can

M5L8086S

16-BIT PARALLEL MICROPROCESSOR

access the instruction queue.

The pipeline architecture increased the throughput of the system. The ability to select 8-bit bytes or 16-bit words by using terminals A_0 and \overline{BHE} , allows more efficient use of memory. This along with a large direct addressable memory (up to 1 M bytes) makes it practical to process large complicated programs. Two kinds of external interrupt in-

put are provided. The INTR is a maskable interrupt input for the normal interrupt applications, while the NMI is a nonmaskable interrupt for the use of a higher priority interrupt such as power down. In addition to external interrupts, internal interrupts can be initiated by software with the overflow and so on.

PIN DESCRIPTIONS

Pins which have the same functions in minimum or maximum mode

Pin	Name	Input or Output	Functional description
AD ₀ ~AD ₁₅	Address and data bas	Input/output	$AD_0 \sim AD_{15}$ is used as both an address bus $(A_0 \sim A_{15})$ and a data bus $(D_0 \sim D_{15})$. Though time sharing it outputs addresses during T_1 state and outputs data during T_2 , T_3 , T_w , T_4 states.
A ₁₉ /S ₆ , A ₁₆ /S ₃	Address and status	Output	The high-order 4 bits $(A_{16} \sim A_{19})$ and status $(S_3 \sim S_6)$ are output using time sharing techniques. The address bits are output during T_1 state and data are output during T_2 , T_3 , T_w , T_4 states. The status bits S_3 and S_4 determine which segment register is used in the bus cycle as follows: $\begin{array}{ccccccccccccccccccccccccccccccccccc$
BHE/S ₇	Bus high enable and status	Output	Bus high enable (BHE) and status are output using time sharing techniques. Bus high enable is output during T ₁ state and status is output during T ₂ , T ₃ , T _W , T ₄ states. BHE along with A ₀ is used to select byte or word unit processing. The selection is as shown below. BHE A ₀ 0 0 word processing (16 bits) 0 1 high-order byte processing (8 bits) 1 0 low-order byte processing (8 bits) 1 1 undefined This pin goes to low-level during the first clock cycle of an interrupt acknowledge cycle. S ₇ is a spare status bit.
RD	Read control	Output	An active "L" signal indicates read timing from memory or an I/O port.
READY	Ready	Input	Signal indicating data transfer to or from memory and I/O device. When the READY signal is at low level the CPU waits for the signal to go high level. When the signal is at high level the CPU ends the read or write.
INTR	Maskable interrupt request	Input	This signal is sampled at the final clock cycle of each instruction for its level. Enable can be masked by software to inhibit interrupts. An interrupt vector of 256 types can be made using an M5L8259A.
TEST	Test	Input	The CPU samples this pin while in the wait state. As the result of executing a WAIT instruction this pin is at high level. If the pin is still at high level when sampled the CPU continues to idle until it goes to low level and when that happens the CPU will resume operation.
NMI	Non-maskable interrupt request	Input	This signal is sampled during the final clock cycle of an instruction execution cycle. It is used for urgent interrupts such as power down. A type 2 interrupt is generated by this signal.
RESET	Reset	Input	This signal is used to initialized the CPU. When used it must be maintained at high level for 4 clock cycles to be effective.
CLK	Clock	Input	This signal is used for internal clocking. It is normally attached to the clock output of a M5L8284P or similar device.

Pin Description During Minimum Mode

Pin	Name	Input or output	Functional description
M/ĪŌ	Data direction control	Output	This pin indicates whether the CPU is accessing memory or an I/O device at the time.
WR	Write control	Output	This signal is used for timing when writing data to external memory or I/O device.
INTA	Interrupt acknowledge	Output	This pin is used as the read strobe for the interrupt vector on the data bus during the interrupt acknowledge cycle.
ALE	Address latch enable	Output	This signal is the output strobe from the CPU for write address. This is output using time sharing techniques to an external latch.
DT/R	Data transfer control	Output	This signal indicates the direction of data transfer between the data bus buffer and an external device.
DEN	Data enable	Output	This signal enables the external data bus buffer.
HOLD	Hold request	Input	When a hold request is received by the CPU it will enter the hold state and surrender control of the data bus at the end of the current instruction execution cycle.
HLDA	Hold acknowledge	Output	This signal shows that the CPU bus accepted a hold request from a peripheral device and that control of the data bus has been surrendered to the peripheral device.

Pin Description During Maximum Mode

Pin	Name	Input or Output				Function description
			S ₂	$\overline{S_1}$	$\overline{S_0}$	
			. 0	0	0	Interrupt acknowledge
			0	0	1	Read I/O port
			0	1	0	Write I/O port
$\overline{S_0} \overline{S_2}, \overline{S_1},$	Status	Output	0	1	1	Hold
			1	0	0	Instruction fetch
			1	0	1	Read memory
			1	1	0	Write memory
			1	1	1	Passive cycle
RQ/GT ₀ RQ/GT ₁	Request/Grant	Input/output	This pin is used t			masters to input a hold request to the CPU and then used to output acknowledge. $\overline{\text{RQ/GT}_1}$.
LOCK	Lock request	Output	This signal forbio	ds the us	e of the s	system bus by any other system bus masters when the CPU is using the system bus.
			The status signal	is used t	or indica	ting queue operations.
			QS)	QS ₁	
QS ₁ ,QS ₀	Queue	Output	0		0	No operation
Q51,Q50	status	Output	0		1	fetch first byte (operation code) of the instruction
			1		0	clear the contents of queue
			1		1	fetch the next byte of the instruction

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage	With respect to GND	−1.0~7	٧
VI	Input voltage	With respect to GND	-1.0~7	V
Pd	Maximum power dissipation	Ta=25°C	2.5	W
Topr	Operating free-air ambient temperature range		0~70	C
Tstg	Storage temperature range		65 ~ 150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta=0 \sim 70\,^{\circ}C$, unless otherwise noted)

			Limits				
Symbol	Parameter	Min	Nom	Max	Unit		
Vcc	Supply voltage	4.5	5	5.5	V		
VIH	High-level input voltage	2.0		V _{CC} +0.5	٧		
VIL	Low-level input voltage	-0.5		0.8	V		
$V_{IH(\phi)}$	High-level clock input voltage	3.9		V _{CC} +1.0	V		
V _{IL} (ø)	Low-level clock input voltage	-0.5		0.6	V		

ELECTRICAL CHARACTERISTICS (Ta=0~70°C, unless otherwise noted)

Combal		Test conditions		Unit		
Symbol	Parameter	rest conditions	Min	Тур	Max	Offic
VoL	Low-level output voltage	I _{OL} =2mA			0.45	V
VoH	High-level output voltage	I _{OH} = - 4 00μA	2.4			٧
Icc	Supply current	Ta = 25°C			340	mA
ILI	Input leak current	0 V < V1 < VCC			± 10	μА
ILO	Output leak current	0.45≦V ₀ ≦V _{CC}			±10	μА
Ci	Input capacitance	f _C =1MHz			10	рF
Co	Output capacitance	f _C = 1MHz			20	pF

TIMING REQUIREMENTS DURING MINIMUM MODE ($Ta=0\sim70^{\circ}C$, $V_{CC}=5V\pm10\%$, unless otherwise noted)

Symbol	Parameter	Alternative	Test conditions	L	Unit		
- Symbol	rarameter	symbol	rest conditions	Min	Тур	Max	Unit
$t_{C(\phi)}$	Clock cycle time	TOLOL		200		500	ns
$t_{W(\phi L)}$	Clock input low-level pulse width	TCLCH		$\frac{2}{3}t_{C(\phi)}-15$			ns
t _{w (øH)}	Clock input high-level pulse width	TCHCL		$\frac{1}{3}t_{c(\phi)}+2$			ns
t _{r (ø)}	Clock input rise time	TCH1CH2	V _{IL} =1.0V, V _{IH} =3.5V			10	ns
t _{f (ø)}	Clock input fall time	TCL2CL1	V _{IL} =1.0V, V _{IH} =3.5V			10	ns
t _{su(DQ-ø)}	Data input setup time before clock	TDVCL		30			ns
t _{h (¢-DQ)}	Data input hold time after clock	TCLDZ		10			ns
t _{Su (RDY-ø)}	RDY setup time before clock (Note 1, 2)	TRIVCL		35		-	ns
t _{h (ø-RDY)}	RDY hold time after clock (Note 1, 2)	TCLRIX		0			ns
tsu (READY-ø)	READY setup time before clock	TRYHCH		2/3 t C (ø)-15			ns
th (ø-READY)	READY hold time after clock	TCHRYX		30			ns
t _{su (READY-¢)}	READY data invalid setup time before clock (Note 3)	TRYLCL		- 8			ns
tsu (HOLD-ø)	HOLD setup time before clock	THVCH	**************************************	35			ns
t _{Su} (INTR- ϕ) t _{Su} (NMI- ϕ) t _{Su} (TEST- ϕ)	INTR, NMI, TEST setup time before clock (Note 2)	TINVCH		30			ns

SWITCHING CHARACTERISTICS $\textbf{DURING MINIMUM MODE} \text{ (Ta} = 0 \sim 70^{\circ}\text{C}, \text{ V}_{OC} = 5\text{V} \pm 10\%, \text{ C}_{L} = 20 \sim 100 \text{pF}, \text{ unless otherwise noted.)}$

Symbol	Parameter	A14	0				
Symbol	rarameter	Alternative	Conditions	Min	Тур	Max	Unit
t _{PXV (ø-A)}	Propagation time, clock to address valid	TCLAV		15		110	ns
t _{PVX (φ-A)}	Address hold time after clock	TCLAX		10			ns
t _{PVZ (ø-A)}	Propagation time, clock to address float	TCLAZ		t _{PVX(A- ø)}		80	ns
tw(ALE)	Address latch enable pulse width	TLHLL		t w(øL)-20			ns
t _{PLH (ø-ALE)}	Propagation time, clock to address latch enable	TOLLH				80	ns
t _{PHL} (ø-ALE)	Propagation time, clock to address latch enable	TCHLL				85	ns
t _{PVZ} (ALE-A)	Propagation time, address latch enable to address float	TLLAZ		t _{w(øH)} -10			
t _{PXV (ø-DQ)}	Propagation time, clock to data valid	TCLDV		15		110	ns
$t_{PVZ}(\phi_{-DQ})$	Propagation time, clock to data float	TCHDZ		t _{h (A-ø)}		85	ns
t _{h (WR-DQ)}	Data hold time after write	TWHDZ		tw(øL)-30			ns
t _{PHL} (ø-DEN) t _{PHL} (ø-WR) t _{PHL} (ø-INTA)	Propagation time, clock to data enable, clock to write, clock to INTA	точотч		10		110	ns
$t_{PHL}(\phi\text{-DT}/\overline{R})$ $t_{PLH}(\phi\text{-DT}/\overline{R})$ $t_{PHL}(\phi\text{-M}/\overline{10})$ $t_{PHL}(\phi\text{-M}/\overline{10})$	Propagation time, clock to data send and return con- trol signal, clock to data transfer control signal	тснсту		15		110	ns
$t_{PLH(\phi-\overline{DEN})}$ $t_{PLH(D-\overline{WR})}$	Propagation time, clock to data enable and write	точотх		10		110	ns
t _{PHL (A-RD)}	Propagation time, address float to read	TAZRL		0			ns
t _{PHL(∳-RD)}	Propagation time, clock to read	TCLRL		10		165	ns
t _{PLH(φ-RD)}	Propagation time, clock to read	TCLRH		10		150	ns
t _{PZV(RD-A)}	Next cycle address propagation time after read	TRHAV	***************************************	t _{C(¢)} -45			ns
t _{PLH} (ϕ -HLDA)	HLDA propagation time after clock.	TCLHAV		10		160	ns

Note 1: Signal at M5L8284P is shown for reference.
2: Setup time required to be recognized at next clock
3: Requirement during T2 state

TIMING REQUIREMENTS DURING MAXIMUM MODE (Ta = 0 \sim 70°C , V_{CC} = 5V \pm 10%, unless otherwise noted)

Combal	D	A14	Conditions		Limits		Unit
Symbol	Parameter	Alternative	Conditions	Min	Тур	Max	Unit
t _{c (\$\phi\$)}	Clock cycle	TOLOL		200		500	ns
tw(øL)	Clock input low-level pulse width	TOLOH		$\frac{2}{3}t_{C(\phi)}-15$			ns
t _{w (øH)}	Clock input high-level pulse width	TCHCL		$\frac{1}{3}t_{c_{(\phi)}}+2$			ns
t _{r (ø)}	Clock input rise time	TCH1CH2	V _{IL} =1.0V V _{IH} =3.5V			10	ns
t _{f (φ)}	Clock input fall time	TOL2OL1	V _{IL} =1.0V V _{IH} =3.5V			10	ns
tsu(DQ-ø)	Data input setup time before clock	TDVCL		30			ns
th (ø-DA)	Data input hold time after clock	TCLDZ		10			ns
tsu (READY- ø)	Ready setup time before clock	TRYHCH		35			ns
th (ø-READY)	Ready hold time after clock	TCHRYX		0			ns
tsu (READY-ø)	Ready invalid setup time before clock (Note 6)	TRYLCL		² / ₃ t _{C (ø)} −15			ns
t _{su (RDY-ø)}	RDY setup time before clock (Note 4, 5)	TR1VCL		35			ns
th (ø-RDY)	RDY hold time after clock (Note 4, 5)	TCLRIX		40			ns
tsu (INTR-¢) tsu (NMI-¢) tsu (TEST-¢)	INTRO, NMI, TEST setup time before clock	TINVCH		30			ns
tsu (RQ/GT-¢)	RQ/GT setup time before clock	TGVCH		30			ns
th (ø-RQ)	RQ hold time after clock	TCHGX		30			ns

MITSUBISHI LSIS M5L8086S

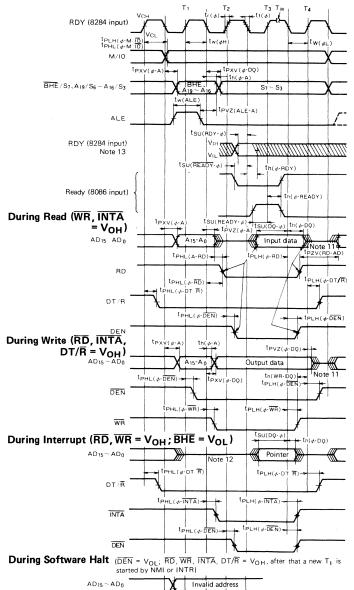
16-BIT PARALLEL MICROPROCESSOR

SWITCHING CHARACTERISTICS

MAXIMUM MODE (2) ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $C_L = 20 \sim 100 pF$, unless otherwise noted)

			0 64	Limits		Unit	
Symbol	Parameter	Alternative	Conditions	Min	Тур	Max	Unit
† PHL (φ-MROC) † PHL (φ-IORC) † PHL (φ-AIOWC) † PHL (φ-AIOWC) † PHL (φ-INTA) † PHL (φ-IWTC) † PHL (φ-IOWC)	Propagation time, clock to MRDC, TORC, ATOWC, AMWC, INTA, MWTC, TOWC (Note 4)	TCLML	C _L =80pF	10		35	ns
TPLH (Ø-MRDC) TPLH (Ø-IORC) TPLH (Ø-AIOWC) TPLH (Ø-AIWC) TPLH (Ø-INTA) TPLH (Ø-IWTC) TPLH (Ø-IOWC)	Propagation time, clock to MRDC, TORC, ATOWC, AMWC, INTA, MWTC, TOWC (Note 4)	TCLMH		10		35	ns
t _{PVZ} (RDY-S)	Propagation time, RDY to status 3~7 float (Note 6)	TRYHSH				1 10	ns
t _{PHL} (ø-s)		TCHSV		10		110	ns
t _{PLH (∳-Ŝ)}	Propagation time, clock to status 0~2	TCLSH		10		130	ns
$\begin{array}{l} t_{PLH(\phi\text{-QS})} \\ t_{PHL(\phi\text{-QS})} \\ t_{PXV(\phi\text{-A})} \\ t_{PHL(\phi\text{-}\overline{LOCK})} \\ t_{PLH(\phi\text{-}\overline{LOCK})} \end{array}$	Propagation time, clock to queue status, address lock	TCLAV		15		110	ns
t _{PVX} (ø-A)	Propagation time, clock to address	TCLAX		10			ns
t _{PVZ} (ø-A)	Propagation time, clock to address float	TCLAZ		t _{PVX(ø-A)}		80	ns
t _{PLH} (S-ALE)	Propagation time, status 0~2 to address latch enable (Note 4)	TSVLH				15	ns
t _{PLH} (S-MCE) t _{PLH} (S-PDEN)	Propagation time, status 0~2 to MCE, PDEM (Note 4)	тѕумсн				15	ns
t _{PLH} (Ø-ALE)	Propagation time, clock to address latch enable (Note 4)	TOLLH				15	ns
t _{PLH (Ø-MCE)} t _{PLH (Ø-PDEN)}	Propagation time, clock to MCE, PDEN (Note 4)	TCLMCH				15	ns
t _{PHL} (ø-ALE)	Propagation time, clock to address latch enable (Note 4)	TCHLL				15	ns
t _{PHL} (ø-MCE) t _{PHL} (ø-PDEN)	Propagation time, clock to MCE, PDEN (Note 4)	TCLMCL				15	ns
t _{PXV (φ-DQ)} t _{PXV (φ-S)}	Propagation time, clock to data and status 3~7 valid	TCLDV		15		110	ns
t _{PVZ} (φ-DQ) t _{PVZ} (φ-S)	Propagation time, clock to data and status 3~7 float	TCHDZ		t _{PVX(¢-A)}		85	ns
t _{PLH} (ø-DEN)	Propagation time, clock to DEN (Note 4)	TCVNV		5		45	ns
t _{PHL} (ø-DEN)	Propagation time, clock to DEN (Note 4)	TCVNX		10		45	ns
t _{PHL (A-RD)}	Propagation time, address float to read	TAZRL		0			ns
t _{PHL} (ø-RD)	Propagation time, clock to read	TCLRL		10		165	ns
t _{PLH (ø-RD)}	Propagation time, clock to read	TCLRH		10		150	ns
t _{PZV} (RD-A)	Propagation time, invalid read to next address	TRHAV		t _{C(ø)} -45			ns
t _{PHL} (ø-DT/R)	Propagation time, clock to data S/R control (Note 4)	TCHDTL				50	ns
t _{PLH} (ø-DT/≅)	Propagation time, clock to data S/R control (Note 4)	TCHDTH				30	ns
t _{PHL} (φ- GT)	Propagation time, clock to data S/R control (Note 4)	TCLGL	C _L = 30pF			8 5	ns
t _{PLH} (ø-GT)	Propagation time, clock to data S/R control (Note 4)	TOLGH	C _L = 30pF			85	ns

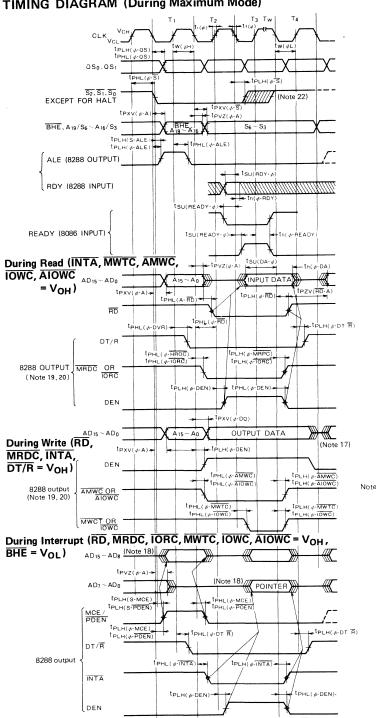
Note 4: Signal of M5L8284P is shown for reference.



^{5:} Setup time required to be recognized at next clock,

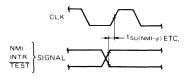
^{6:} Applies only to T₃ and wait states.

^{7:} Applies only to T₂ states.


TIMING DIAGRAM (During Minimum Mode)

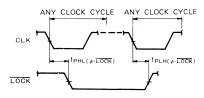
- Note 8: the center line indicates floating (high-impedance) state.
 - Input signal is entered within the range of V_{OL}~V_{OH} unless otherwise noted.
 - 10: When the $T_{\rm W}$ state is entered the RDY signal is sampled near the end of T_2 , T_3 and $T_{\rm W}$.
 - 11: Only when the M5L8086S enters a hold acknowledge cycle does the local bus go to a floating state after a write cycle.
 - 12: An interrupt cycle requires 2 clock cycles. The AD bus goes to a floating state during the second cycle of an interrupt.
 - 13: Signals of the M5L8284P are shown for reference.
 - 14: All timing signals are tested at 1.5V unless otherwise noted.

TIMING DIAGRAM (During Maximum Mode)

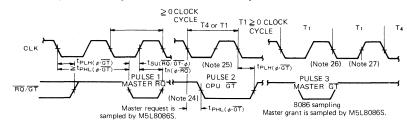

- Note 15: Input signals are entered within the range VOL~VOH unless otherwise noted.
 - 16: When the $T_{\mathbf{w}}$ state is entered the RDY signal is sampled near the end of T_2 , T_3 and T_w .
 - 17: Only when the M5L8086S enters a hold acceptance cycle does the local bus go to a floaling state after a write cycle.
 - 18: An interrupt cycle requires 2 cycles. The AD bus goes to a floating state during the second cycle of an interrupt.
 - 19: Signals of the M5L8284P and M5L8288 are shown for reference.
 - 20: The M5L8288 sends a command and a control signal soon after the CEN signal.
 - 21: All timing signals are tested at 1.5V unless otherwise noted.
 - 22: Status is invalid just before T4 state.

During Software Halt (\overline{RD} , \overline{MRDC} , \overline{IORC} , \overline{AWMC} , \overline{IOWC} , \overline{INTA} , $DT/\overline{R} = V_{OH}$, $DEN = \overline{V}_{OL}$, TI's follow T_1 then T₁ is started by NMI or INTR). X INVALID ADDRESS AD15~AD0 tPXV(ø-A)

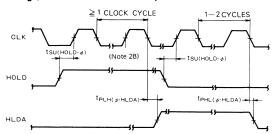
S2, S1, S0


TIMING DIAGRAM

Asynchronous Signal Recognition Timing



Note 23: Setup time required for being recognized in the next cycle.


Bus Lock Signal Timing (For Maximum Mode Only)

Request/Grant Sequence Timing (For Maximum Mode Only)

Hold Acknowledge Timing (For Minimum Mode Only)

- Note $24: S_2$, S_1 and S_0 are changed to floating from the states of (1,1,1) at this edge.
 - 25: AD bus, $\overline{\text{RD}}$ and $\overline{\text{LOCK}}$ are changed to floating at this edge.
 - $26;\ S_2$, S_1 and S_0 of the other master are changed to floating from the states of (1, 1, 1) at this edge.
 - 27: AD bus, RD and LOCK of the other master are changed to floating at this edge.
 - 28: Bus is changed to floating at this edge.

M5L8086S

16-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTION INSTRUCTION SET SUMMARY

Item		Instruction code										
ype of struction	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D	Hexadecimal notation									
	(MOV EA1/r1, EA2/r2)	1 0 0 0 1 0 d W MOD REG R/M (DISP-L) (DISP-H)	88~8B									
	MOV F1,F2	1 0 0 0 1 0 d W 1 1 REG R/M										
	MOV F1, EA2	1 0 0 0 1 0 1 W MOD REG R/M										
		(DISP-L) (DISP-H)										
	MOV EA1, r 2	1 0 0 0 1 0 0 W MOD REG R/M (DISP-L (DISP-H										
-	(MOV EA1/r1, DATA)	(DISP-L (DISP-H)	C6~C7									
	(MOV LATITITIES)	(DISP-L) (DISP-H)	00 01									
		(DATA-H)										
	MOV F1, DATA	1 1 0 0 0 1 1 W 1 1 0 0 0 R/M										
	MOV EA1, DATA	(DATA-L) (DATA-H) 1 1 0 0 0 1 1 W MOD 0 0 0 R/M										
		(DISP-L) (DISP-H)										
v		(DATA-L) (DATA-H)										
ster	MOV r1, DATA	1 0 1 1 W REG (DATA-L	Bo~BF									
tran	MOV. A ADDD	(DATA-H) (ADDR-L)	40.44									
General transfers	MOV Acc, ADDR	1 0 1 0 0 0 0 W (ADDR-L)	A0~A1									
Sene	MOV ADDR, Acc	1 0 1 0 0 0 1 W (ADDR-L	A2~A3									
		(ADDR-H)										
	(MOV SEG, EA2/r2)	1 0 0 0 1 1 1 0 MOD 0 SR R/M	8E									
	MOV SEG, r 2	(DISP-L) (DISP-H)										
	MOV SEG, EA2	1 0 0 0 1 1 1 0 MOD 0 SR R/M										
		(DISP-L) (DISP-H)										
ers	(MOV F1/EA1, SEG)	1 0 0 0 1 1 0 0 MOD 0 SR R/M	8C									
Data transfers	MOV r1, SEG	(DISP-L) (DISP-H)										
i e	MOV f1, SEG MOV EA1, SEG	1 0 0 0 1 1 0 0 1 1 0 SR R/M 1 0 0 0 1 1 0 0 MOD 0 SR R/M										
Lea	,	(DISP-L) (DISP-H)										
	(XCHG r1, EA2/r2)	1 0 0 0 0 1 1 W MOD REG R/M	86~87									
	V0110 - F4 F6	(DISP-H)										
	XCHG r1,r2 XCHG r1, EA2	1 0 0 0 0 1 1 W 1 1 REG R/M 1 0 0 0 0 1 1 W MOD REG R/M										
	XONG 11, EXE	(DISP-L) (DISP-H)										
	XCHG AX, r2	1 0 0 1 0 REG	90~97									
	XLAT m	1 1 0 1 0 1 1 1	D7									
	(PUSH EA1/r1)	1 1 1 1 1 1 1 1 MOD 1 1 0 R/M	FF									
	PUSH T1	(DISP-L) (DISP-H)										
	PUSH EA1	1 1 1 1 1 1 1 1 1 1 1 1 0 R/M 1 1 1 1 1 1 1 1 1 MOD 1 1 0 R/M										
ω .	2.00	(DISP-L) (DISP-H)										
iệ	PUSH r1	0 1 0 1 0 REG	50~57									
operations	PUSH SEG	0 0 0 SR 1 1 0	06, 0E, 16, 1									
9	(POP EA1/T1)	1 0 0 0 1 1 1 1 MOD 0 0 0 R/M (DISP-L) (DISP-H)	8F									
Stack	POP F1	1 0 0 0 1 1 1 1 1 1 1 0 0 R/M										
"	POP EA1	1 0 0 0 1 1 1 1 MOD 0 0 0 R/M										
		(DISP-L) (DISP-H)										
	POP r1	0 1 0 1 1 REG	58~5F									
-	POP SEG IN Acc, Port	0 0 0 SR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	07, 0F, 17, 1 E4~E5									
out /	IN Acc, DX	1 1 1 0 1 1 0 W	EC~ED									
Input/ output	OUT Port, Acc	1 1 1 0 0 1 1 W (PORT)	E6~E7									
	OUT DX, Acc	1 1 1 0 1 1 1 W	EE ~ EF									
	LEA F1, EA2	1 0 0 0 1 1 0 1 MOD REG R/M (DISP-L) (DISP-H)	8D									
ress	LDS T1, EA2	1 1 0 0 0 1 0 1 MOD REG R/M	C5									
Address transfers		(DISP-H)										
	LES T1, EA2	1 1 0 0 0 1 0 0 MOD REG R/M	C4									
1	LAHF	(DISP-L) (DISP-H)	9F									
Flag transfers	SAHF	1 0 0 1 1 1 1 0	9E									
1 8 %	POPF	1 0 0 1 1 1 0 1	9D									
1078	PUSHF											

	B							Flags				
Clock cycles	Bytes in the code	Bus cycles	Function description	0 F	D F	F	T F	S F	Z F	A F	P	
				X	X	X	X	X	X	X	X	X
2 8 + EA	2 2~4	0	(r1) ← (r2) (r1) ← (EA2) MOD ≠ 11									
9+EA	2~4	1	(EA1)←(r2) MOD ± 11									
				X	X	X	X	X	X	X	X	X
4	3-4	0	(r1)←DATA									
10+EA	3-6	1	(EA1)←DATA MOD±11									
4	2~ 3	0	(r1)←DATA	X	X	X	X	X	X	X	X	X
10	3	1	(A _{CC})←(ADDR)	X	X	X	X	X	X	X	X	Х
10	3	1.	(ADDR)←(A _{CC})	X	X	X	X	X	X	X	X	X
			When SR = 01: undefined	X	X	X	X	X	X	X	X	X
2 8+EA	2 2—4	0 1	(SEG)←(r2) (SEG)←(EA2) MOD±11						•			
				×	X	Х	X	X	X	X	X	Х
2 9 EA	2 2~4	0	(r1)←(SEG) (EA1)←(SEG) MOD±11									
				X	X	X	Х	Х	X	X	Х	Х
4 17+EA	2 2~4	0	$(r1) \longleftrightarrow (r2)$ $(r1) \longleftrightarrow (EA2)$ MOD=11									
3	1	0	$(AX) \longleftrightarrow (rz)$				Х			X		X
11	1	1	(AL)←((BX)+(AL)): (m)	X			X	X			X	X
11 16+EA	2 2~4	1 2	$(SP) \leftarrow (SP) - 2$, $((SP) + 1 : (SP)) \leftarrow (T1)$ $(SP) \leftarrow (SP) - 2$, $((SP) + 1 : (SP)) \leftarrow (EA1)$ MOD ± 11									
10	1	1	(SP)←(SP)-2, ((SP)+1:(SP))←(r1)		Х	Х	Х	Х	Х	Х	X	X
10	1	1	$(SP)\leftarrow (SP)-2$, $((SP)+1:(SP))\leftarrow (SEG)$ When $SR=01:$ undefined			X	X	X		X		X
8 17+EA	2 2~4	1 2	(r1)←((SP)+1:(SP)), (SP)←(SP)+2 (EA1)←((SP)+1:(SP)), (SP)←(SP)+2 MOD+11									
8	1	1	(r1)←((SP)+1:(SP)), (SP)←(SP)+2		X			X				X
8 10	2	1 1	(SEG) ← $((SP)+1:(SP))$, (SP) ← $(SP)+2$ When $SR = 01:$ undefine (A_{CC}) ← $(Port)$	X		X	X	X				X
8 10	1 2	1	$(A_{CC}) \leftarrow ((DX))$ $(Port) \leftarrow (A_{CC})$	X	Х	Х	Х	Х	X	Х	X	X
8	1	1	$((DX)) \leftarrow (A_{CC})$				X			X	X X	X
2+EA	2-4	0	(r1)←EA2 When MOD = 11: undefined						X	Х	×	X
16+EA	2~4	2	$(r1) \leftarrow (EA2)$, $(DS) \leftarrow (EA2+2)$ When MOD = 11: undefined	X	X	×	×	×	X	X	X	X
16+EA	2-4	2	(r1)←(EA2), (ES)←(EA2+2) When MOD = 11: undefined	Х	X	X	X	X	X	X	X	X
4	1	0	(AH)←(SF):(ZF):X:(AF):X:(PF):X:(CF)	X	X	X	X	X	X	X	X	X
4	1	0	(SF): (ZF): X: (AF): X: (PF): X: (CF)←(AH)						0		~~	
8 10	1	1	$(FR) \leftarrow ((SP) + 1 : (SP)), (SP) \leftarrow (SP) + 2$ $(SP) \leftarrow (SP) - 2, ((SP) + 1 : (SP)) \leftarrow (FR)$				<u>О</u>		0			

MITSUBISHI LSIS M5L8086S

Item									Instruction co	de		
ype of struction		Mnemonic		D ₇ D ₆ D ₅ D ₄	D ₃	D ₂	D ₁	D ₀	D ₇ D ₆	D ₅ D ₄ D ₃	D ₂ D ₁ D ₀	Hexadecima notation
	(ADD	EA1/11, EA2/12)	0 0 0 0 (DISP-L	0	0	d	W	MOD (DISP-H	REG	R/M	00~03
	ADD	F1.F2		0 0 0 0	0	0	d	w	1 1	REG	R/M	1
	ADD	r1, EA2		0 0 0 0 (DISP-L	ō	Ō	1	w	MOD (DISP-H	REG	R/M	
	ADD	EA1, r 2		0 0 0 0 (DISP-L	0	0	0	w	MOD (DISP-H	REG	R/M]	
	(ADD	EA1/f1, DATA)	1 0 0 0 (DISP-L (DATA-L	0	0	S	w]]	MOD (DISP-H (DATA-H	0 0 0	R/M))	80~83
	ADD	F1, DATA		1 0 0 0 (DATA-L		0		w	1 1 (DATA-H	0 0 0	R/M)	1
	ADD	EA1, DATA		1 0 0 0 (DISP-L (DATA-L	0	0	S	W]]	MOD (DISP-H (DATA-H	0 0 0	R/M]]	
	ADD	Acc, DATA		0 0 0 0 (DATA-H	0	1	0	W	(DATA-L)	04 - 05
tions	(ADC	EA1/r1, EA2/r2)	0 0 0 1 (DISP-L	0	0	d	w	MOD (DISP-H	REG	R/M)	10~13
rela l	ADC	r1,r2		0 0 0 1		0			1 1	REG	R/M	
ic inst	ADC	F1, EA2		0 0 0 1 (DISP-L	0	0	1	w)	MOD (DISP-H	REG	R/M)	
Arithmetic instructions Addition and related	ADC	EA1, r 2		0 0 0 1 (DISP-L	0	0	0	w	MOD (DISP-H	REG	R/M)	
Ari	(ADC	EA1/r1, DATA)	1 0 0 0 (DISP-L (DATA-L	0	0	S	w]]	MOD (DISP-H (DATA-H	0 1 0	R/M]]	80~83
	ADC	F1, DATA		1 0 0 0 (DATA-L	0	0	S	w	1 1 (DATA-H	0 1 0	R/M)	
	ADC	EA1, DATA		1 0 0 0 (DISP-L (DATA-L	0	0	s	w	MOD (DISP-H (DATA-H	0 1 0	R/M	
	ADC	ACC, DATA		0 0 0 1 (DATA-H	0	1	0	w	(DATA-L)	14~15
	(INC	EA1/F1)	1 1 1 1 (DISP-L	1	1	1	w)	MOD (DISP-H	0 0 0	R/M)	FE~FF
	INC	F1 EA1		1 1 1 1		1			1 1 MOD	0 0 0	R/M R/M	
	INC	r ₁		(DISP-L	0		REC		(DISP-H		J	40~47
	AAA	• 1		0 1 0 0		1						37
	DAA			0 0 1 0	0	1	1	1				27

				Flags									
Clock cycles	Bytes in the code	Bus cycles	Function description	O D I T S Z A P F F F F F F F									
				0 X X X 0 0 0 0									
3	2	0	$(r1) \leftarrow (r1) + (r2)$										
9 + EA	2~4	1	$(r_1) \leftarrow (r_1) + (EA2)$ MOD ± 11										
16+EA	2~4	2	(EA1) ← (EA1) + (r2) MOD ≠ 11										
			When S:W = 01 then DATA is DATA-L and DATA-H When S:W = 11 then DATA is DATA-L and DATA-H is filled with the sign of DATA-L (sign extended)	0 x x x 0 0 0 0									
4	3~4	0	$(r1) \leftarrow (r1) + DATA$										
17+EA	3~6	2	(EA1) ← (EA1) + DATA MOD ± 11										
4	2~3	0	(Acc)← (Acc)+DATA	0 x x x 0 0 0 0									
				0 X X X 0 0 0 0									
3	2	0	$(r1) \leftarrow (r1) + (r2) + 1$	*									
9+EA	2~4	1	$(r1) \leftarrow (r1) + (EA2) + 1$ MOD=11										
16+EA	2~4	2	$(EA1) \leftarrow (EA1) + (r2) + 1$ $MOD = 11$										
			.When S:W = 01 then DATA is DATA-L and DATA-H When S:W = 11 then DATA is DATA-L and DATA-H is filled with the sign of DATA-L (sign extended)	0 x x x 0 0 0 0									
4	3~4	0	$(r1) \leftarrow (r1) + DATA + 1$										
17 + EA	3~6	2	(EA1) ← (EA1) + ĎATA +1										
4	2~3	0	(Acc) ← (Acc) + DATA +1	0 x x x 0 0 0 0									
				0 x x x 0 0 0 0									
3	2	0	$(r1) \leftarrow (r1) + 1$										
15+EA	2~4	2	(EA1) ← (EA1) +1 MOD ≠ 11										
2	1	0	(r1)←(r1)+1	0 x x x 0 0 0 0									
4	1	0	When (AL) $0F_{16}$ or (CF) = 1: (AL) \leftarrow (AL! + (AL) + 60_{16} (AH) \leftarrow (AH) +1, (AF) \leftarrow 1, (CF) \leftarrow (AF) (AL) \leftarrow (AL) \wedge 0F ₁₆	\triangle X X X \triangle \triangle \triangle									
4	1	0	When (AL) $0F_{16}$ or (CF) = 1: (AL) \leftarrow (AL) + (AL) + 60 ₁₆ (CF) \leftarrow (AF) \vee (CF), (AF) \leftarrow 1	Δ X X X O O O O									
			When (AL) > 9F ₁₆ or (CF) = 1: (AL) \leftarrow (AL) $+$ 60 ₁₆ (CF) \leftarrow 1										

Item						Instruction code		
ype of struction		Mnemonic		D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	D ₇ D ₆ D ₅ D ₄ D ₃	D ₂ D ₁ D ₀	Hexadecima notation
	(SUB	EA1/r1, EA2/r2) '	0 0 1 0	1 0 d W	MOD REG	R/M	28~ 2B
	SUB	r _{1,} r ₂		(DISP-L 0 0 1 0	1 0 d W	(DISP-H 1 1 REG	R/M	
	SUB	r1, EA2		0 0 1 0	1 0 1 W	MOD REG	R/M	
	SUB	EA1, r2		(DISP-L 0 0 1 0	1 0 0 W	(DISP-H MOD REG] R/M	
				(DISP-L		(DISP-H)	
	(SUB	EA1/F1, DATA)	1 0 0 0 (DISP-L	o o s w	MOD 1 0 1 (DISP-H	R/M	80∼83
	SUB	r1, DATA		(DATA-L 1 0 0 0	oosw	(DATA-H 1 1 1 0 1	R/M	
	SUB	EA1, DATA		(DATA-L 1 0 0 0	0 0 S W	(DATA-H MOD 1 0 1	R/M	
	305	LAI, DAIA		(DISP-L)	(DISP-H)	
1 +	SUB	Acc, DATA		(DATA-L 0 0 1 0) 1 1 0 W	(DATA-H (DATA-L)	2C~2D
	306			(DATA-H)	(DATA-L	,	2C~2D
	(SBB	EA1/r1, EA2/r2)	0 0 0 1 (DISP-L	1 0 d W	MOD REG (DISP-H	R/M)	18~ 1B
	SBB	r1,r2		0 0 0 1	1 0 d W	1 1 REG	R/M	
	SBB	r1, EA2		0 0 0 1 [DISP-L	1 0 1 W	MOD REG	R/M	
	SBB	EA1, r2		0 0 0 1	1 0 0 W	MOD REG	R/M	
-	(SBB	EA1/F1, DATA)	(DISP-L 1 0 0 0	0 0 S W	(DISP-H MOD 0 1 1	R/M	80~83
		., .,		(DISP-L (DATA-L)	(DISP-H (DATA-H)	
t,q)	SBB	r1, DATA		1 0 0 0	o o s w	1 1 0 1 1	R/M	
g g	SBB	EA1, DATA		(DATA-L 1 0 0 0	o o s w	(DATA-H MOD 0 1 1] R/M	
Arithmetic instructions (Cont'd) Subtraction and related	355	201, 2010		(DISP-L (DATA-L]	(DISP-H (DATA-H]	
ion a	SBB	Acc, DATA		0 0 0 1	1 1 0 W	(DATA-L		1C∼ 1D
tic ir	(DEC	EA1/r1)	(DATA-H 1 1 1 1	1 1 1 W	MOD 0 0 1	R/M	FE∼ FF
Sub			1	(DISP-L)	(DISP-H)	
Ari	DEC	Γ1 EA1		1 1 1 1	1 1 1 W	1 1 0 0 1 MOD 0 0 1	R/M R/M	
				(DISP-L)	(DISP-H		
	DEC (NEG	F1 EA1/F1)	0 1 0 0	1 REG	MOD 0 1 1	R/M	48~4F F6~F7
	(NE G	EA1/- 1	,	(DISP-L	Ö "	(DISP-H	77/11/	10 17
	NEG NEG	r1 EA1		1 1 1 1	0 1 1 W	1 1 0 1 1	R/M	
	NEG	EAI		(DISP-L	0 1 1 W	MOD 0 1 1 (DISP-H	R/M }	
	(CMP	EA1/F1, EA2/F2)	0 0 1 1 (DISP-L	1 0 d W	MOD REG (DISP-H	R/M	38~3B
	CMP	r1, r2		0 0 1 1	1 0 d W	1 1 REG	R/M	
	СМР	r1, EA2		0 0 1 1 (DISP-L	1 0 1 W	MOD REG (DISP-H	R/M	
	СМР	EA1, r2		0 0 1 1	1 0 0 W	MOD REG	R/M	
	(CMP	EA1/F1, DÄTA)	(DISP-L 1 0 0 0	0 0 S W	(DISP-H MOD 1 1 1	R/M	80~83
	Com	241/11, 0414	,	(DISP-L	, ,)	(DISP-H)	80 - 83
	СМР	r 1, DATA		(DATA-L 1 0 0 0	0 0 S W	DATA-H 1 1 1 1 1	R/M	
				(DATA-L)	(DATA-H)	
	CMP	EA1, DATA		1 0 0 0 (DISP-L	o o s w	MOD 1 1 1 (DISP-H	R/M	
				(DATA-L)	(DATA-H)	
	CMP	Acc, DATA		0 0 1 1 (DATA-H	1 1 0 W	(DATA-L	j	3C~3D
	AAS			0 0 1 1	1 1 1 1			3F
	DAS			0 0 1 0	1 1 1 1			2F
1 1								

	Byton in							Flags				
Clock cycles	Bytes in the code	Bus cycles	Function description	F	D F	F	F	F		F	P F	F
				0	Х	X	Х	0	0	0	0	0
3 9 + EA	2 2~4	0	$(r1) \leftarrow (r1) - (r2)$ $(r1) \leftarrow (r1) - (EA2)$ MOD = 11									
16+EA	2~4	2	(EA1) ← (EA1) – (r2) MOD + 11									
			When S:W = 01 then DATA is DATA-L and DATA-H When S:W = 11 then DATA is DATA-L and the signs of DATA-L are extended to form 16-bit operand.	0	X	X	X	0	0	0	0	0
4	3 4	0	(r1)←(r1)-DATA									
17+EA	3~6	2	(EA1) ← (EA1) − DATA MOD +11									
4	2~3	0	(Acc) ← (Acc) – DATA	0	Х	Х	X	0	0	0.	0	0
				- 0	X	Х	Х	0	0	0	0	0
3	2	0	$(r1) \leftarrow (r1) - (r2) - 1$ when (CF) = 1									
9 + E.A	2~4	1	$(r1) \leftarrow (r1) - (EA2) -1 \text{ when } (CF) = 1$ MOD = 11									
16+EA	2~4	2	$(EA1) \leftarrow (EA1) - (r2) - 1 \text{ when (CF)} = 1$ MOD = 11									
			When S:W = 01 then DATA is DATA-L and DATA-H When S:W = 11 then DATA is DATA-L and the sign of DATA-L is extended to form a 16-bit operand.	0	X	X	X	0	0	0	0	0,
4	3~4	0	$(r1) \leftarrow (r1) - DATA -1$ when $(CF) = 1$									
17 + E.A	3~6	2	$(EA1) \leftarrow (EA1) - DATA$ -1 when $(CF) = 1$ $MOD + 11$									
4	2~3	0	$(A_{CC}) \leftarrow (A_{CC}) - DATA$ when $(CF) = 1$	0	X	X	X	0	0	0	0	0
				0	X	X	X	0	0	0	0	X
3 15+EA	2 2~4	0 2	(r1)←(r1)-1 (EA1)←(EA1)-1 MOD±11									
2	1	0	(r1)←(r1)−1	0	X	X	X	0		0	$\overline{\cap}$	×
			When W=0 (SRC)=FFH							ŏ		
3 16+EA	2 2~4	0 4	When W=1 (SRC)=FFFFH $(r_1) \leftarrow (SRC) - (r_1)$, $(r_1) \leftarrow 0 - (r_1)$ $(EA1) \leftarrow (SRC) - (EA1)$, $(EA1) \leftarrow 0 - (SRC)$ MOD # 11									
	<u> </u>			0	X	Х	X	0	0	0	0	0
3	2	0	(r1) - (r2)									
9 + E.A	2~4	1	(r1)-(EA2) MOD + 11									
16+EA	2~4	2	(EA1)-(F2) MOD+11									
			When S:W = 01 then DATA is DATA-L and DATA-H When S:W = 11 then DATA is DATA-L and the signs of DATA-L are	0	X	Х	Х	0	0	0	0	0
4	3~4	0	extended to form 16-bit operand. (F1)—DATA									
17+EA	3~6	2	(EA1)-DATA MOD±11									
4	2~3	0	(A _{CC})—DATA	0	Х	Х	X	0	0	0	0	0
4	1	0	When $((AL) \lor OF_{16})$ or $(AF) = 1$: When $(AL) \lor OF_{16}$ or $(AF) = 1$: $(AL) \leftarrow (AL) - 6$ $(AH) \leftarrow (AH) - 1$, $(AF) \leftarrow 1$, $(CF) \leftarrow (AF)$ $(AL) \leftarrow (AL) \lor OF_{16}$	Δ	X	X	X	^	^	0	^	0
4	1	0	$(AL) \leftarrow (AL) \lor 0F_{16}$ When $((AL) \lor 0F_{16})$ or $(AF) = 1$: When $(AL) \lor 0F_{16}$ or $(AF) = 1$: $(AL) \leftarrow (AL) - 6$ $(CF) \leftarrow (AF) \lor (CF) + (AF) \leftarrow 1$ When $(AL) > 9F_{16}$ or $(CF) = 1$: $(AL) \leftarrow (AL) - 60_{16}$	Δ	X	X	X	0	0	0	0	0

M5L8086S

Item		Instruction code	
pe of struction	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexadecima notation
	(MUL EA1/r1)	1 1 1 1 0 1 1 W MOD 1 0 0 R/M (DISP-L) (DISP-H)	F6~F7
	MUL T1	1 1 1 1 0 1 1 0 1 1 1 0 0 R/M	1
		1 1 1 1 0 1 1 1 1 1 1 0 0 R/M	
	MUL EA1	1 1 1 1 0 1 1 0 MOD 1 0 0 R/M	
Pa		(DISP-L) (DISP-H) 1 1 1 1 0 1 1 1 MOD 1 0 0 R/M	
d relat		(DISP-L) (DISP-H)	
Multiplication and related	(IMUL EA1/r1)	1 1 1 1 0 1 1 W MOD 1 0 1 R/M (DISP-L) (DISP-H)	F6~F7
tiplica	IMUL r1	1 1 1 1 0 1 1 0 1 1 1 0 1 R/M	
Mu		1 1 1 1 0 1 1 1 1 1 0 1 R/M	
9	IMUL EA1	1 1 1 1 0 1 1 0 MOD 1 0 1 R/M	
200) 8		(DISP-L) (DISP-H) 1 1 1 1 0 1 1 1 MOD 1 0 1 R/M	
	AAM	(DISP-L) (DISP-H) 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0	D4
	(DIV EA1/F1)	1 1 1 1 0 1 1 W MOD 1 1 0 R/M (DISP-L) (DISP-H)	F6~F7
Altimetic instructions (cont. d)			
	DIV r1	1 1 1 1 0 1 1 0 1 1 1 1 0 R/M	
		1 1 1 1 0 1 1 1 1 1 0 R/M	
pa	DIV EA1	1 1 1 1 0 1 1 0 MOD 1 1 0 R/M (DISP-L) (DISP-H)	
d relat		1 1 1 1 0 1 1 1 MOD 1 1 0 R/M (DISP-L) (DISP-H)	
Division and related	(IDIV EA1/r1)	1 1 1 1 0 1 1 W MOD 1 1 1 R/M (DISP-L) (DISP-H)	F6~F7
	IDIV r1	1 1 1 1 0 1 1 0 1 1 1 1 1 R/M	
	IDIV EA1	1 1 1 1 0 1 1 1 1 1 1 1 1 R/M 1 1 1 1 0 1 1 0 MOD 1 1 1 R/M	
	IDIT ENI	(DISP-H)	
		1 1 1 1 0 1 1 1 MOD 1 1 1 R/M (DISP-L) (DISP-H)	
	AAD	1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0	D5
	CBW	1 0 0 1 1 0 0 0	98
	CWD	1 0 0 1 1 0 0 1	99

								Flags				
Clock cycles	Bytes in the code	Bus cycles	Function description	0 F	D F	F	T F	S F	Z F	A F	P	C F
			(EXT) ← overflow digit of operation; when (EXT) = 0: (CF) ← 0	0	Х	X	X	Δ	Δ	Δ	Δ	
70~77	2	0	When $(EXT) \neq 0$: $(0F) \leftarrow (CF)$, $(CF) \leftarrow 1 - (CF)$ When $W = 0$: $(EXT) = (AH)$									
70-77	<u> </u>	0	(AX) ← (AL) * (r1)									
118~133	2	0	When W = 1: (EXT) = (DX)									
1.5			$(DX : AX) \leftarrow (AX) * (r1)$									
(76~83)+EA	2~4	1	When W = 0: (EXT) = (AH) $MOD = 11$									
(404 450) . 5			$(AX) \leftarrow (AL) * (EA1)$									
(124~139)+EA	2~4	1	When W = 1: $(EXT) = (DX)$ MOD = 11 $(DX : AX) \leftarrow (AX) * (EA1)$									
			(EXT) \leftarrow overflow digit of operation; when (LOW) changes to (EXT) by extending the sign bit of (LOW); (CF) \leftarrow 0	0	X	X	X	Δ	Δ	\triangle	\triangle	0
			Otherwise: (0F) (CF), (CF) ← 1									
80 98	2	0	When $W = 0$: (EXT) = (AH), (LOW) = (AL)									
			$(AX) \leftarrow (AL) * (r1)$									
128 154	2	0	When $W = 1$: (EXT) = (DX), (LOW) = (AX)									
(86~104)+EA	2~4	1	(DX:AX)← (AX) * (r1) When W = 0: (EXT) = (AH), (LOW) = (AL) MOD ≠ 11									
(86~104)+EA	2~4	' '	$(AX) \leftarrow (AL) * (EA1)$									
(134~160)+EA	2 4	1	When W = 1: (EXT) = (DX), (LOW) = (AX) $MOD = 11$									
,		1	$(DX : AX) \leftarrow (AX) * (EA1)$									
83	2	0	$(AH) \leftarrow (AL) \div 0A_{16}$,	- △	Х	X	Х	0	0	Δ	0	Δ
			(AL) ← remainder									
			$(\text{temp}) \leftarrow \text{dividend}; \text{ when W = 0: MAX = FF}_{16};$		Х	Х	Х	Δ	Δ	Δ	Δ	Δ
			When W = 1: MAX = FFFF ₁₆ ; (temp) ÷ (EA1/r1) When results of the division are larger than MAX, an interrupt of TYPE = 0									
			is generated, (SP) \leftarrow (SP) \sim 2, ((SP) + 1: (SP)) \leftarrow flag									
			$(1F) \leftarrow 0$, $(TF) \leftarrow 0$, $(SP) \leftarrow (SP) -2$, $((SP) + 1: (SP)) \leftarrow (CS)$									
			(CS) \leftarrow contents of address 2, (SP) \leftarrow (SP) -2, ((SP) +1: (SP)) \leftarrow IP									
			(IP) ← contents of address 0, the result of the division is undefined.									
80~90	2	0	$(AL) \leftarrow (AX) \div (r1), (AH) \leftarrow Remainder$									
144~162	2	0	$(AX) \leftarrow (DX : AX) \div (\Gamma 1), (DX) \leftarrow Remainder$									
(86~96)+EA	2~4	1	$(AL) \leftarrow (AX) \div (EA1)$ $(AH) \leftarrow Remainder$ $MOD = 11$									
(150~168)+EA	2~4	1	$(AX) \leftarrow (DX : AX) \div (EA1), (DX) \leftarrow Remainder MOD = 11$									
			(temp) ← dividend; when W = 0: MAX = 7F ₁₆	-Δ	Х	Х	X	Δ	Δ	Δ	Δ	Δ
			When W = 1: $MAX = 7FFF_{16}$; $MIN = 81_{16}$									
			when the result of the division is positive and over MAX or when negative and more negative than MIN an interrupt of TYPE = 0 is generated and									
			the result of the division is undefined.									
101~112	2	0	$(AL) \leftarrow (AX) \div (r1), (AH) \leftarrow Remainder$									
165~184	2	0	$(AX) \leftarrow (DX : AX) \div (r1), (DX) \leftarrow Remainder$									
(107~118)+EA	2~4	1	$(AL) \leftarrow (AX) \div (EA1), (AH) \leftarrow Remainder MOD = 11$									
(171~190)+EA	2 ~ 4	1	$(AX) \leftarrow (DX : AX) \div (EA1), (DX) \leftarrow Remainder MOD + 11$									
60	2	0	$(AL) \leftarrow (AH) * 0A_{16} + (AL), (AH) \leftarrow 0$	_	X	×	X	0	$\overline{\cap}$	Δ	0	_
2	1	0	When $(AL) < 80_{16}$: $(AH) \leftarrow 0$		Ŷ		$\frac{\hat{x}}{x}$	$\overset{\smile}{x}$	$\frac{\circ}{x}$	X	$\overset{\smile}{x}$	X
			When (AL) $\geq 80_{16}$: (AH) \leftarrow FF ₁₆ (extended sign bit)									
5	1	0	When $(AX) < 8000_{16}$: $(DX) \leftarrow 0$	X	X	X	X	X	X	X	X	X
			When $(AX) \ge 8000_{16}$: $(DX) \leftarrow FFFF_{16}$ (extended sign bit)	1								

Item		Instruction code											
ype of struction	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexadecimal notation										
	(NOT EA1/r1)	1 1 1 1 0 1 1 W MOD 0 1 0 R/M (DISP-L) (DISP-H)	F6~F7										
-	NOT F1 NOT EA1	1 1 1 1 0 1 1 W 1 1 0 1 0 R/M 1 1 1 1 0 1 1 W MOD 0 1 0 R/M (DISP-L) (DISP-H)											
	(AND EA1/r1, EA2/r2)	0 0 1 0 0 0 d W MOD REG R/M (DISP-L) (DISP-H)	20~23										
	AND	0 0 1 0 0 0 d W 1 1 REG R/M 0 0 1 0 0 0 1 W MOD REG R/M (DISP-L) (DISP-H)											
	AND EA1, r2	0 1 D 0 0 d W MOD REG R/M (DISP-L) (DISP-H)											
	(AND EA1/F1, DATA)	1 0 0 0 0 0 W MOD 1 0 0 R/M (DISP-L) (DISP-H)	80~81										
	AND T1, DATA	(DATA-L											
	AND EA1, DATA	1 0 0 0 0 0 W MOD 1 0 0 R/M (DISP-L)											
	AND Acc, DATA	(DATA-L) (DATA-H) O 0 1 0 0 1 0 W (DATA-L) (DATA-H)	24~25										
	(TEST EA1/F1, EA2/F2)	1 0 0 0 0 1 0 W MOD REG R/M (DISP-L) (DISP-H)	84~85										
	TEST r1,r2 TEST r1,EA2 \ TEST EA1,r2	1 0 0 0 0 1 0 W 1 1 REG R/M 1 0 0 0 0 1 0 W MOD REG R/M (DISP-H)											
	(TEST EA1/r1, DATA)	1 1 1 1 0 1 1 W MOD 0 0 0 R/M (DISP-L) (DISP-H)	F6~F7										
ulation	TEST r1, DATA	(DATA-L											
Bit manipulation	TEST EA1, DATA	1 1 1 1 0 1 1 W MOD 0 0 0 R/M (DISP-L) (DISP-H)											
ia	TEST ACC, DATA	(DATA-H) (DATA-H) 1 0 1 0 0 W (DATA-L) (DATA-H)	A8~ A9										
	(OR EA1/r1, EA2/r2)	0 0 0 0 1 0 d W MOD REG R/M (DISP-L) (DISP-H)	08~ 0B										
	OR	0 0 0 0 1 0 d W 1 1 REG R/M 0 0 0 0 1 0 1 W MOD REG R/M (DISP-L) (DISP-H)											
	OR EA1, r2	0 0 0 0 1 0 0 W MOD REG R/M (DISP-L) (DISP-H)											
	(OR EA1/r1, DATA)	1 0 0 0 0 0 0 W MOD 0 0 1 R/M (DISP-H) (DATA-H)	80~81										
	OR r ₁ , DATA	1 0 0 0 0 0 0 W 1 1 0 0 1 R/M (DATA-L) (DATA-H)											
	OR EA1, DATA	1 0 0 0 0 0 0 W MOD 0 0 1 R/M (DISP-L) (DISP-H)											
	OR Acc, DATA	(DATA-L) (DATA-H) 0 0 0 0 1 1 0 W (DATA-L) (DATA-H)	OC~OD										
	(XOR EA1/r1, EA2/r2)	0 0 1 1 0 0 d W MOD REG R/M (DISP-L) (DISP-H)	30~33										
	XOR	0 0 1 1 0 0 d W 1 1 REG R/M 0 0 1 1 0 0 1 W MOD REG R/M (DISP-L) (DISP-H)											
	XOR EA1,r2	0 0 1 1 0 0 0 W MOD REG R/M (DISP-L) (DISP-H)											
	(XOR EA1/F1, DATA)	1 0 0 0 0 0 W MOD 1 1 0 R/M (DISP-L) (DISP-H) (DATA-L) (DATA-H)	80~81										
	XOR r1, DATA	1 0 0 0 0 0 0 W 1 1 1 1 0 R/M (DATA-L) (DATA-H)											
	XOR EA1, DATA	1 0 0 0 0 0 W MOD 1 1 0 R/M (DISP-L) (DISP-H) (DATA-L) (DATA-H)											
	XOR Acc, DATA	(DATA-L) (DATA-H) 0 0 1 1 0 1 0 W (DATA-L) (DATA-H)	34~35										

	Bytes in			-				Flag	5			
Clock cycles	the code	Bus cycles	Function description .	O F	D F	F		S F	Z F	A F	P F	
		1 1	When W = 0: (SRC) = FF_{16} When W = 1: (SRC) = $FFFF_{16}$	×	X	X	Х	Х	X	X	X	X
3	2	0	$(r1) \leftarrow (SRC) - (r1)$									
16 + EA	2~4	1	$(EA1) \leftarrow (SRC) - (EA1)$ MOD=11									
	-		After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	X	X	X	0	0	Δ	0	0
3 ,	2	0	$(r_1) \leftarrow (r_1) \land (r_2)$									
9 + EA	2~4	1	(r1) ← (r1) ∧ (EA2) MOD ≠ 11									
16+EA	2-4	2	$(EA1) \leftarrow (EA1) \land (r2)$ MOD = 11									
	2 2		After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	X	X	X	0	0	Δ	Ω	0
4	3~4	0	(r1) ← (r1) ∧ DATA									
17 + EA	3~6	2	(EA1) ← (EA1) ∧ DATA MOD ± 11									
III LA	3 0	_	(EAT) (EAT) (BATA									
4	2~3	0	(Acc) ← (Acc) ∧ DATA	0	X	X	X	0	0	Δ	0	0
			After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0 After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	X	×	X	0	0	_	0	0
2	2	o	(r1) ← (r1) ∧ (r2)									Ť
3 9 + E.A	2 2~4	1	(r1) ← (r1) Λ (EA2)									
			$(EA1) \leftarrow (EA1) \land (r2)$ After execution of the instruction $(CF) \leftarrow 0$, $(OF) \leftarrow 0$	-	· ·		-	_		Δ		
			After execution of the instruction (CF) = 0, (OF) = 0	"	^	^	^	0	O	Δ	0	U.
5	3~4	0	(r 1)← (r1) Λ DATA									
11+EA	3~6	2	(EA1) ← (EA1) ∧ DATA MOD+11									
4	2~3	0	(Acc) ∧ DATA, (CF)←0, (OF)←0	0	X	X	×	0	0		0	0
			After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	X	X	X		0	\triangle	0	0
												·
9 + E.A	2 2~4	0	$(r1) \leftarrow (r1) \ V \ (r2)$ $(r1) \leftarrow (r1) \ V \ (EA2)$ MOD = 11									
16+EA	2~4	2	(EA1)←(EA1) V (F2) MOD±11									
			After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	X	X	X	0	0	Δ	0	0
4	3~4	0	(r1)←(r1) V DATA									
17 + EA	3~6	2	(EA1)←(EA1) V DATA MOD±11									
I/+LA	3~0	2	(LAT) - (LAT) V DATA MOD+11									
4	2~3	0	$(Acc) \leftarrow (Acc) \ \ V \ \ DATA, \ \ (CF) \leftarrow 0, \ \ (OF) \leftarrow 0$	0	X	×	×	0	0	Δ	0	0
·			After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	×	X	×	0	0	Δ	0	0
3	2	0	(r1)←(r1) ∀ (r2)									
9 + E.A	2~4	1	(r1)←(r1) ¥ (EA2) MOD±11									
16+EA	2~4	2	(EA1) ← (EA1) ♥ (r2) MOD ± 11	-								
			After execution of the instruction (CF) \leftarrow 0, (OF) \leftarrow 0	0	X	X	X	0	0	Δ	0	0
4	3~4	0	(r1)←(r1) ♥ DATA									
17+EA	3~6	2	(EA1) ← (EA1) ¥ DATA MOD±11									
I/ TEA	3~6	2	(CALLY V DATA MODELL									
	1	1		1								

M5L8086S

16-BIT PARALLEL MICROPROCESSOR

MACHINE INSTRUCTION INSTRUCTION SET SUMMARY

Item		Instruction code											
Type of nstruction	Mnemonic	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀	Hexadecimal notation										
	(SHL/SAL EA1/r1, 1/CL)	1 1 0 1 0 0 V W MOD 1 0 0 R/M (DISP-L) (DISP-H)	Do~D3										
	SHL/SAL F1, 1 SHL/SAL F1, CL	1 1 0 1 0 0 0 W 1 1 1 0 0 R/M 1 1 0 1 0 0 1 W 1 1 1 0 0 R/M											
	SHL/SAL EA1, 1	1 1 0 1 0 0 0 W MOD 1 0 0 R/M											
	SHL/SAL EA1, CL	(DISP-L) (DISP-H) 1 1 0 1 0 0 1 W MOD 1 0 0 R/M											
	(SHR EA1/r1, 1/CL)	(DISP-L) (DISP-H) 1 1 0 1 0 0 V W MOD 1 0 0 R/M	D0~D3										
t		(DISP-L) (DISP-H)											
Shifts													
	SHR F1, 1 SHR F1, CL	1 1 0 1 0 0 0 W 1 1 1 0 1 R/M 1 1 0 1 0 0 1 W 1 1 1 0 1 R/M											
	SHR EA1, 1	1 1 0 1 0 0 0 W MOD 1 0 1 R/M											
	SHR EA1, CL	(DISP-L) (DISP-H) 1 1 0 1 0 0 1 W MOD 1 0 1 R/M											
-	(SAR EA1/F1, 1/CL)		D0~D3										
		(DISP-H)											
	SAR F1, 1 SAR F1, CL	1 1 0 1 0 0 0 W 1 1 1 1 1 R/M 1 1 0 1 0 0 1 W 1 1 1 1 1 R/M											
	SAR EA1, 1	1 1 0 1 0 0 0 W MOD 1 1 1 R/M											
Bit manipulation (cont'd)	SAR EA1, CL	(DISP-L) (DISP-H) 1 1 0 1 0 0 1 W MOD 1 1 1 R/M											
ion (cc	(ROL EA1/r1, 1/CL)	(DISP-L) (DISP-H) 1 1 0 1 0 0 V W MOD 0 0 0 R/M	D0~D3										
pulat		(DISP-L) (DISP-H)											
man	ROL r1, 1 ROL r1, CL	1 1 0 1 0 0 0 W 1 1 0 0 0 R/M 1 1 0 1 0 0 1 W 1 1 0 0 0 R/M											
ă	ROL EA1, 1	1 1 0 1 0 0 0 W MOD 0 0 0 R/M											
	ROL EA1, CL	(DISP-L) (DISP-H) 1 1 0 1 0 0 1 W MOD 0 0 0 R/M											
	(ROR EA1/r1, 1/CL)		D0~D3										
		(DISP-L) (DISP-H)											
	ROR r1, 1	1 1 0 1 0 0 0 W 1 1 0 0 1 R/M											
	ROR F1, CL ROR EA1, 1	1 1 0 1 0 0 1 W 1 1 0 0 1 R/M 1 1 0 1 0 0 0 W MOD 0 0 1 R/M											
	•	(DISP-L) (DISP-H)											
Rotates	ROR EA1, CL	1 1 0 1 0 0 1 W MOD 0 0 1 R/M (DISP-L) (DISP-H)											
Rot	(RCL EA1/F1, 1/CL)	1 1 0 1 0 0 V W MOD 0 1 0 R/M (DISP-L)	DO~D3										
	RCL r1, 1												
	RCL r1, CL	1 1 0 1 0 0 0 W 1 1 1 0 1 0 R/M 1 1 0 1 0 0 1 W 1 1 0 1 0 R/M											
	RCL EA1, 1	1 1 0 1 0 0 0 W MOD 0 1 0 R/M (DISP-L) (DISP-H)	-										
	RCL EA1, CL	1 1 0 1 0 0 1 W MOD 0 1 0 R/M (DISP-L) (DISP-H)											
	(RCR EA1/F1, 1/CL)		D0~D3										
	BOD #4												
	RCR F1, 1 RCR F1, CL	1 1 0 1 0 0 0 W 1 1 0 1 1 R/M 1 1 0 1 0 0 1 W 1 1 0 1 1 R/M											
	RCR EA1	1 1 0 1 0 0 0 W MOD 0 1 1 R/M											
	RCR EA1, CL	(DISP-L) (DISP-H) 1 1 0 1 0 0 1 W MOD 0 1 1 R/M											
		(DISP-L) (DISP-H)											

	Bytes in							Flags	;			
Clock cycles	the code	Bus cycles	Function description	0 F	D F	F	T F	S F	Z F	A F	P	C F
2 8+4/bit 15+EA 20+EA+4/bit	2 2 2-4 2-4	0 0 2 2	When V = 0: COUNT ← 1 if the high-order bit of (EA1/r1) = (CF) : (OF) ← 0 if the high-order bit of (EA1/r1) ≠ (CF) : (OF) ← 1 When V = 1: COUNT ← (CL), (OF) is undefined Shift one bit as indicated below and reduce COUNT by 1, Repeat until COUNT becomes 0. OF ← (EA1/r1) ← 0	0	×	X	X	×	X	×	×	0
2	2	0	When $V=0$: COUNT \leftarrow 1 if the high-order bits of (EA1/r1) are equal: (OF) \leftarrow 0 if the high-order bits of (EA1/r1) are not equal: (OF) \leftarrow 1 When $V=1$: COUNT \leftarrow (CL), (OF) is undefined Shift one bit as indicated below and reduce COUNT by 1, Repeat until COUNT becomes 0.	0	X	X	×	X	×	X	×	0
8+4/bit 15+EA 20+EA+4/bit	2 2~4 2~4	0 2 2	$0 \to \boxed{ (EA1/r1)} \to \boxed{CF}$									
2 8+4/bit 15+EA 20+EA+4/bit	2 2 2~4 2~4	0 0 2 2	When V = 0: COUNT ← 1, (OF) ← 0 When V = 1: COUNT ← (CL), (OF) is undefined Shift one bit as indicated below and reduce COUNT by 1, Repeat until COUNT becomes 0. (EA1/r1) → OF	0	X	X	X	X	×	X	X	0
2 8+4/bit 15+EA 20+EA+4/bit	2 2 2~4 2~4	0 0 2 2	When V = 0: COUNT \leftarrow 1 if the high-order bit of (EA1/r1) = (CF) : (OF) \leftarrow 0 if the high-order bit of (EA1/r1) \neq (CF) : (OF) \leftarrow 1 When V = 1: COUNT \leftarrow (CL), (OF) is undefined Rotate one bit as indicated below and reduce COUNT by 1. Repeat until COUNT becomes 0.	0	X	×	X	X	X	X	X	0
2 8+4/bit 15+EA 20+EA+4/bit	2 2 2~4 2~4	0 0 2 2	When V = 0: COUNT ← 1 if the high-order bits of (EA1/r1) are equal: (OF) ← 0 if the high-order bits of (EA1/r1) are not equal: (OF) ← 1 When V = 1: COUNT ← (CL), (OF) is undefined Rotate one bit as indicated below and reduce COUNT by 1. Repeat until COUNT becomes 0.	0	X	×	X	X	X	X	×	0
2 8+4/bit 15+EA 20+EA+4/bit	2 2 2~4 2~4	0 0 2 2	When $V=0$: COUNT $\leftarrow 1$ if the high-order bits of (EA1/r1) are equal: (OF) $\leftarrow 0$ if the high-order bits of (EA1/r1) are not equal: (OF) $\leftarrow 1$ When $V=1$: COUNT \leftarrow (CL), (OF) is undefined Rotate one bit as indicated below and reduce COUNT by 1. Repeat until COUNT becomes 0.	0	X	X	X	X	X	×	×	0
2 8+4/bit 15+EA 20+EA+4/bit	2 2 2~4 2~4	0 0 2 2	When $V=0$: COUNT $\leftarrow 1$ if the high-order bits of (EA1/r1) are equal: (OF) $\leftarrow 0$ if the high-order bits of (EA1/r1) are not equal: (OF) $\leftarrow 1$ When $V=1$: COUNT \leftarrow (CL), (OF) is undefined Rotate one bit as indicated below and reduce COUNT by 1. Repeat until COUNT becomes 0.	0	X	X	X	X	X	X	×	0

	Item												Instru	ction c	ode					
Type c		Mnemonic			D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆								D ₅ D ₄ D ₃ D ₂ D ₁ D ₀				Hexadecima notation			
	Repeat prefix	(REP REPE/REP REPNE/RE)	1	1 1	1	1	0	0	1	1 0								F2~F3
	Transmission	MOVS ME	EM1, MEM2		1	0	1	0	0	1	0	W								A4~ A5
ulations	Comparison	CMPS ME	M1, MEM2		1	0	1	0	0	1	1	w								A6~A7
String manipulations	Scan	SCAS ME	М		1	0	1	0	1	1	1	W								AE~AF
	Load	LODS ME	М		1	0	1	0	1	1	0	w								AC~AD
	Store	STOS ME	М		1	0	1	0	1	0	1	w								AA~AB

				T				lags		-		
Clock cycles	Bytes in the code	Bus cycles	Function description	0	D		Т	S	z	Д	P	
(Note 29)		(Note 29)		F	F	F	F	F	F	F	F	F
2 2	1 1	0	Register CX becomes a counter. The prefixed instruction is executed and CX is counted down by 1. The execution of the prefixed instruction and counting down of CX is repeated until CX becomes 0. The instructions SCAS and CMPS, which may alter some flags will not repeat when the value of Z # (ZF)	X	X	X	X	X	X	X	X	X
18 9+17/LOOP	1	2 2/L00P	$ \begin{array}{ll} (D1) = MEM1, (ST) = MEM2 \\ When \ W = 0: \ (D11) \leftarrow ((S1)) \\ if \ (DF) = 0: \ (D1) \leftarrow (D1) + 2, \ (S1) \leftarrow (S1) + 2 \\ if \ (DF) = 1: \ (D1) \leftarrow (D1) - 2, \ (S1) \leftarrow (S1) - 2 \\ When \ W = 1: \ ((D1 + 1; D1)) \leftarrow ((S1 + 1; S1)) \\ if \ (DF) = 0: \ (D1) \leftarrow (D1) + 2, \ (S1) \leftarrow (S1) + 2 \\ if \ (DF) = 1: \ (D1) \leftarrow (D1) - 2, \ (S1) \leftarrow (S1) - 2 \\ \end{array} $	х	X	X	×	×	×	×	X	X
22	1	2	(SI) = MEM1, (DI) = MEM2 When W = 0: ((SI)) \leftarrow ((DI)) if (DF) = 0: (DI) \leftarrow (DI)+1, (SI) \leftarrow (SI)+1 if (DF) = 1: (DI) \leftarrow (DI)-1, (SI) \leftarrow (SI)-1	0	X	X	X	0	0	0	0	0
9+22/LOOP		2/L00P	When W = 1: $((SI+1:SI)) \leftarrow ((DI+1:DI))$ if $(DF) = 0$: $(DI) \leftarrow (DI)+2$, $(SI) \leftarrow (SI)+2$ if $(DF) = 1$: $(DI) \leftarrow (DI)-2$, $(SI) \leftarrow (SI)-2$	-								
15 9+15/L00P	1	1 1/L00P	(D1) = MEM When W = 0: (AL) \leftarrow ((D1)) if (DF) = 0: (D1) \leftarrow (D1)+1 if (DF) = 1: (D1) \leftarrow (D1)-1 When W = 1: (AX) \leftarrow ((D1+1:D1)) if (DF) = 0: (D1) \leftarrow (D1)+2	0	X	×	X	0	0	0	0	0
12			if (DF) = 1: (DI) ← (DI)~2									
. 12	1	1	(SI) = MEM When W = 0: (AL) ← ((SI)) if (DF) = 0: (SI) ← (SI)+1 if (DF) = 1: (SI) ← (SI)-1	X	X	X	X	×	×	×	X	X
9+13/L00P		1/L00P	When W = 1: $(AX) \leftarrow ((S +1:S))$ if $(DF) = 0$: $(S) \leftarrow (S)+2$ if $(DF) = 1$: $(S) \leftarrow (S)-2$									
11	1	1	(D1) = MEM When W = 0: ((D1)) \leftarrow (AL) if (DF) = 0: (D1) \leftarrow (D1)+1 if (DF) = 1: (D1) \leftarrow (D1)-1	X	X	X	X	X	X	X	X	X
9+10/L00P	= 1 · . · · · · · · · · · · · · · · · · ·	1/L00P	When W = 1: $((DI+1:DI)) \leftarrow (AX)$ if $(DF) = 0$: $(DI) \leftarrow (DI)+2$ if $(DF) = 1$: $(DI) \leftarrow (DI)-2$									

Note 29:The number of clock and bus cycles depend on the number of time an instruction is repeated.

The numbers shown are the number per loop and to determine the number of cycles the listed figures must be multiplied by the number of times the instruction is repeated.

MITSUBISHI LSIS M5L8086S

Iten	m			Instruction code	
ype of		Mnemonic		D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁	D ₀ Hexadecimal notation
		JMP	DISP 16	1 1 1 0 1 0 0 1 (DISP-L (DISP-H)) E9
ءِ ا		JMP	DISP8	1 1 1 0 1 0 1 1 (DISP-L) EB
nal jun		JMP	EA1/r1	1 1 1 1 1 1 1 1 MOD 1 0 0 R/N (DISP-L) (DISP-H	FF)
Unconditional jump		JMP	FAR-LABEL	1 1 1 0 1 0 1 0 (Offset-L (Offset-H) (Seg-L (Seg-H)) EA
5		JMP	EA1/r1	1 1 1 1 1 1 1 1 MOD 1 0 1 R/N (DISP-L) (DISP-H) FF
		CALL	NEAR-PROC	1 1 1 0 1 0 0 0 (DISP-L (DISP-H)) E8
<u>_</u>		CALL	EA1/r1	1 1 1 1 1 1 1 MOD 0 1 0 R/N (DISP-L) (DISP-H	FF)
Control transfer		CALL	FAR-PROC	1 0 0 1 1 0 1 0 (Offset-L (Offset-H) (Seg-L (Seg-H) 9A
Contr		CALL	EA1/F1	1 1 1 1 1 1 1 MOD 0 1 1 R/N (DISP-L) (DISP-H	FF)
		RET		1 1 0 0 0 0 1 1	Сз
		RET	DATA	1 1 0 0 0 0 1 0 (DATA-L (DATA-H)) C2
Return		RET		1 1 0 0 1 0 1 1	СВ
		RET	DATA	1 1 0 0 1 0 1 0 (DATA-L (DATA-H)) CA

								Flags				
Clock cycles	Bytes in the code	Bus cycles	Function description	O F	D F	F	T F	S	Z F	A F	P	F
15	3	0	Jump within current segment (DEST) ← (IP) + DISP	×	X	Х	X	X	X	X	X	-
15	2	0	Jump within current segment	X	X	X	X	X	X	X	Х	_
18+EA	2~4	1 0	When MOD = 11: (IP) ← (r1) When MOD ≠ 11: (IP) ← (EA1)					X				
15	5	0	Jump to other segment (IP) ← Offset, (CS) ← Seg	×	X	Х	Х	X	X	X	X	
24 + EA	2-4	2	Jump to other segment $(IP) \leftarrow (EA1/\Gamma1)$ $(OS) \leftarrow (EA1+1/\Gamma1+1)$	×	X	×	X	X	×	X	X	
11	3	1	Call within current segment (DEST) ← (IP) + DISP	100				X			,,	
13 + EA	2~4	2	Call within current segment When MOD = 11: (DEST) \leftarrow r1 When MOD \neq 11: (DEST) \leftarrow (EA1)					Х				
20	5	2	Call to other segment $(DEST) \leftarrow Offset, (SEG) \leftarrow Seg.$	X	Х	X	X	X	Х	Х	X	
29 + E.A	2~4	4	Call to other segment (DEST) \leftarrow (EA1/r1), (SEG) \leftarrow (EA1 + 1/r1 + 1)	×	X	X	X	X	X	X	×	_
			(SP)←(SP)-2 ((SP)+1:(SP))←(CS) (CS)←(SEG) (SP)←(SP)-2 ((SP)+1:(SP)) ←(IP) (IP)←(DEST)									
8	1	1	Return within current segment $(IP) \leftarrow ((SP) + 1 : (SP)), (SP) \leftarrow (SP) + 2$	X	X	X	X	X	X	X	X	
12	3	1	Return within current segment $(IP) \leftarrow ((SP) + 1 : (SP)), (SP) \leftarrow (SP) + DATA$					X				
18	1	2	Return to other segment $(IP) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+2$ $(CS) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+2$	X	X	X	X	X	X	X	X	
17	3	2	Return to other segment $(IP) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+2$ $(CS) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+DATA$	X	X	X	Х	X	X	X	X	_

Item			Instruction code									
pe of struction	Mnemonic	D ₇ D ₆ D ₅ D ₄	D ₃ D ₂ D ₁ D ₀	D ₇ D ₆ D ₅ D ₄ D ₃	D ₂ D ₁ D ₀	Hexadecimal notation						
	JE/JZ LABEL	0 1 1 1	0 1 0 0	(DISP)	74						
	JL/JNGE LABEL	0 1 1 1	1 1 0 0	(DISP)	7C						
	JLE/JNG LABEL	0 1 1 1	1 1 1 0	(DISP)	7E						
	JB/JNAE LABEL	0 1 1 1	0 0 1 0	(DISP)	72						
-	JBE/JNA LABEL	0 1 1 1	0 1 1 0	(DISP)	76						
	JP/JPE LABEL	0 1 1 1	1 0 1 0	(DISP)	7A						
	JO LABEL	0 1 1 1	0 0 0 0	(DISP)	70						
Condition jump	JS LABEL	0 1 1 1	1 0 0 0	(DISP)	78						
	JNE/JNZ LABEL	0 1 1 1	0 1 0 1	(DISP)	75						
Control transfer (Control	JNL/JGE LABEL	0 1 1 1	1 1 0 1	(DISP)	7D						
i de la constanta de la consta	JNLE/JG LABEL	0 1 1 1	1 1 1 1	(DISP)	7F						
	JNB/JAE LABEL	0 1 1 1	0 0 1 1	(DISP	J	73						
	JNBE/JA LABEL	0 1 1 1	0 1 1 1	(DISP)	77						
	JNP/JPO LABEL	0 1 1 1	1 0 1 1	(DISP	J	7B						
	JNO LABEL	0 1 1 1	0 0 0 1	(DISP	J ,	71						
	JNS LABEL	0 1 1 1	1 0 0 1	(DISP)	79						
	LOOP LABEL	1 1 1 0	0 0 1 0	(DISP	J	E2						
ıtrol	LOOPZ/LOOPE LABEL	1 1 1 0	0 0 0 1	(DISP)	E1						
Internal control	LOOPNZ/LOOPNE LABEL	1 1 1 0	0 0 0 0	(DISP)	EO						
=	JCXZ LABEL	1 1 1 0	0 0 1 1	(DISP)	E3						

				Flags
Clock cycles	Bytes in the code	Bus cycles	Function description	O D I T S Z A P C F F F F F F F F
16 4	2 2	0	When $(ZF) = 1$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit) When $(ZF) = 0$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.)	x x x x x x x x x
16 4	2 2	0	When (SF) \forall (OF) = 1: (IP) \leftarrow (IP) + DISP (extends sign bit) When (SF) \forall (OF) = 0: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x
16	2	0	When (SF) \forall (OF) \lor (ZF) = 1: (IP) \leftarrow (IP) + DISP (extends sign bit) When (SF) \forall (OF) \lor (ZF) = 0: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x
16	2	0	When (CF) = 1: (IP) \leftarrow (IP) + DISP (extends sign bit) When (CF) = 0: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x
4	2	0	When (Cr) = 0. (IF) = (IF) + 2 (executes the next inst.)	
16 6	2	0	When (CF) V (ZF) = 1: (IP) \leftarrow (IP) $+$ DISP (extends sign bit) When (CF) V (ZF) = 0: (IP) \leftarrow (IP) $+$ 2 (executes the next inst.)	x x x x x x x x x
16 4	2	0	When $(PF) = 1$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit) When $(PF) = 0$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.)	x x x x x x x x x
16 4	2	0	When (OF) = 1: (IP) \leftarrow (IP) + DISP (extends sign bit) When (OF) = 0: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x
16	2	0	When (SF) = 1: (IP) \leftarrow (IP) + DISP (extends sign bit) When (SF) = 0: (IP) \leftarrow (IP) + 2 (executes the next inst.)	X X X X X X X X X
16	2	0	When $(ZF) = 0$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit) When $(ZF) = 1$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.)	x x x x x x x x x x
4	2	0	When (2) / 1. (ii) · (ii) · 2 (executes the next hist.)	
16	2	0	When (SF) \forall (OF) = 0: (IP) \leftarrow (IP) + DISP (extends sign bit) When (SF) \forall (OF) = 1: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x
16	2	0	When (SF) \forall (OF) \lor (ZF) = 0: (IP) \leftarrow (IP) + DISP (extends sign bit) When (SF) \forall (OF) \lor (ZF) = 1: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x x
16	2	0	When (CF) = 0: (IP) ← (IP) + DISP (extends sign bit)	x x x x x x x x x
4	2	0	When (CF) = 1: (IP) ← (IP) + 2 (executes the next inst.)	
16	2	0	When (CF) \vee (ZF) = 0: (IP) \leftarrow (IP) + DISP (extends sign bit) When (CF) \vee (ZF) = 1: (IP) \leftarrow (IP) + 2 (executes the next inst.)	x x x x x x x x x
16	2	0		X X X X X X X X X
4	2	0	When (PF) = 0: (IP) \leftarrow (IP) + DISP (extends sign bit) When (PF) = 1: (IP) \leftarrow (IP) + 2 (executes the next inst.)	
16	2	0	When (OF) = 0: $(IP) \leftarrow (IP) + DISP$ (extends sign bit) When (OF) = 1: $(IP) \leftarrow (IP) + 2$ (executes the next inst.)	X X X X X X X X X
16	2	0	When (SF) = 0: (IP) \leftarrow (IP) + DISP (extends sign bit)	x x x x x x x x x
4	2	0	When $(SF) = 1$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.)	
17 5	2	0	$(CX) \leftarrow (CX) - 1$ When $(CX) = 0$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit) When $(CX) = 1$: $(IP) \leftarrow (IP) + 2$ (except to be sorting)	x x x x x x x x x
18	2	0	When $(CX) = 1$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.) $(CX) \leftarrow (CX) - 1$ When $(ZF) = 1$ and $(CX) \neq 0$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit)	x x x x x x x x x
6 19	2	0	When $(ZF) = 0$ or $(CX) = 0$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.) $(CX) \leftarrow (CX) - 1$	X X X X X X X X X
-	2		When $(ZF) = 0$ and $(CX) \neq 0$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit)	
18	2	0	When $(ZF) = 1$ or $(CX) = 0$: $(IP) \leftarrow (IP) + 2$ (executes the next inst.) When $(CX) = 0$: $(IP) \leftarrow (IP) + DISP$ (extends sign bit)	x x x x x x x x x x
6	2	0	When (CX) = 1: (IP) \leftarrow (IP) + 2 (executes the next inst.)	

\	Item				Instruction code	
Type o	of		Mnemonic		D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀ D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D	Hexadecimal notation
		(INT INT INT	type type 3 (any))	1 1 0 0 1 1 0 V (When V = 1: Specify type) 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 (type)	
t'd)						
Control transfer (cont'd)	upt	INTO	· · · · · · · · · · · · · · · · · · ·		1 1 0 0 1 1 1 0	CE
trol tran	Interrupt					
Con						
		IRET	-		1 1 0 0 1 1 1 1	CF
		CLC			1 1 1 1 0 0 0	F8
		CMC			1 1 1 1 0 1 0 1	F5
	Flag	STC			1 1 1 1 0 0 1	F9
	L.	CLD			1 1 1 1 1 0 0	FC
		STD			1 1 1 1 1 0 1	FD
		CLI			1 1 1 1 0 1 0	FA
trol		STI HLT			1 1 1 1 0 1 1	FB F4
Processor control		WAIT			1 0 0 1 1 0 1 1	9B
Proce	snoa	ESC			1 1 0 1 1 X X X MOD X X X R/M	D8~DF
	Miscellaneous	230			(DISP-L) (DISP-H)	D8 - DF
		LOCK		100 NOV	1 1 1 1 0 0 0 0	FO
		NOP			1 0 0 1 0 0 0 0	90

Note 30: The preceding tables are summaries of details of the instructions of the M5L8086S, Basic instructions with variation are shown in brackets "[]" in the mnemonic column followed by the variations.

Instructions are from 1 to 6 bytes in length. Details of the first byte are given in the left half of the instruction code column, the second byte in the right half, the third byte below the first, the fourth byte below the second, the fifth byte below the third and the sixth byte below the fourth.

The hexadecimal column shows the value of the first byte of an instruction, When in has a single value the single value is shown. When it has a range of values, the range is shown.

								Flags	ŝ			
Clock cycles	Bytes in the code	Bus cycles	Function description	0 F	D F	I F	T F	S	Z F	Ā	P	
			141.	X	X	0	0	X	X	X	X	
52	1	5	When V = 0: Type = 3									
51	2	5	When V = 1: Type = type $(0 \sim 255)$									
			$(SP) \leftarrow (SP) - 2$, $((SP) + 1 : (SP)) \leftarrow Flag$	l								
			$(IF) \leftarrow 0$, $(TF) \leftarrow 0$, $(SP) \leftarrow (SP) - 2$									
			$((SP)+1:(SP))\leftarrow(CS), (CS)\leftarrow(type*4+2)$									
			$(SP) \leftarrow (SP) - 2$, $((SP) + 1 : (SP)) \leftarrow (IP)$ $(IP) \leftarrow (type * 4)$						-			_
4	1	0	When (OF) = 0: No operation	X	Х	0	0	X	Х	Х	Х	
53	1	5	When (OF) = 1:									
			$(SP) \leftarrow (SP) - 2$, $((SP) + 1 : (SP)) \leftarrow Flag$									
			$(IF) \leftarrow 0, (TF) \leftarrow 0$									
			$(SP) \leftarrow (SP) - 2$, $((SP) + 1 : (SP)) \leftarrow (CS)$									
			$(0S) \leftarrow 12_{16}$									
			$(SP) \leftarrow (SP) - 2, ((SP) + 1)$									
24	1	3	(IP) ← 10 ₁₆ Return from interrupt routine	-	_	_	_	_		_	_	
24	'	3	Heturn from interrupt routine $(IP) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+2$. 9	. 0	\circ	0	O	\circ	0	
			$(SP) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+2$ $(CS) \leftarrow ((SP)+1:(SP)), (SP) \leftarrow (SP)+2$									
			$(SP) \leftarrow ((SP) + 1 : (SP)), (SP) \leftarrow (SP) + 2$ $(Flag) \leftarrow ((SP) + 1 : (SP)), (SP) \leftarrow (SP) + 2$									
2	1	0	(CF)←0	Y	×	×	×	X	Y	Y	Y	-
2	1	0	When (CF) = 0: (CF) ← 1 (complement CF)	X	×	X	×	X	×	×	×	-
			When $(CF) = 1$: $(CF) \leftarrow 0$									
2	1	0	(CF)←1	X	X	X	Х	X	X	X	X	-
2	1	0	(DF)←0	Х	1	X	X	X	X	X	Х	_
2	1	0	(DF)←1	X	1			X				
2	1	0	(IF)←0	Х	X	0	X	X	X	X	X	_
2	1	0	(IF) ← 1	Х	X	1	X	Х	X	X	Х	_
2	1	0	When this instruction is executed the CPU is put in the HALT state.	X	X	X	X	X	X	X	Х	_
			An interrupt or RESET will take the CPU out of the HALT state.									
3	1	0	The CPU is kept in the wait state until the TEST pin is V _{OI} .	×	X	×	×	X	×	¥	¥	-
•	· ·	-	When		^	^	^	^	^	^	^	
			When									
2	2	0	AAA and BBB are not specified	X	X	Х	Х	Х	X	X	Х	-
8+EA	2~4	1	When MOD = 11: No operation									
			When MOD ≠ 11: (DATA BUS) ← (EA1)									
2	1	0	When this is prefixed to an instruction, during the execution of the	X	×	X	×	×	Х	X	X	-
			instruction a bus lock is output through the LOCK pin.					•	•			
3	1	0	NO OPERATION	-		~	~	V	-			_
3	1 1	U	NO OFERATION		Ā	Ā	X	X	Х	х	Х	

M5L8086S

16-BIT PARALLEL MICROPROCESSOR

SYMBOLS USED AND THEIR MEANING

Symbol		Symbol	
Acc	Accumulator (AX, AL or AH)	LABEL	Label name
ADDR	Memory address	V	Inclusive OR
DATA	Immediate data (data which is part of the instruction)	₩.	Exclusive OR
DISP	Displacement	٨	Logical AND
d	When d = 0 source is REG, destination is EA (R/M)		Subtraction
	When d = 1 source is EA (R/M0, destination is REG	+ '	Addition
EA	Effective address	*	Multiplication
EA1,EA2	First effective address, second effective address	÷	Division
Port	I/O port	-	Direction of data transfer
r1,r2	First register, second register	↔	Exchange of data
SR	Segment register code	()	Contents of register or memory
SEG	Segment register (CS, DS, SS and ES)	V1:V2	Pair of register or data treated as one unit
w	When 0: byte processing When 1: word processing	×	Does not affect the flag or instruction
-L	Suffix indicating low-order 8 bits	0	Flag may be changed by the instruction
_н	Suffix indicating high-order 8 bits	^	Flag is undefined after execution of the instruction
DEST	Transfer address (Destination address)	FR	Flag register

ADDRESSING MODE AND REGISTER

1. Instruction Format

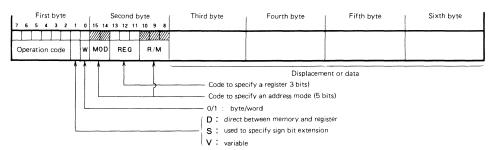


Table 1 EA Determination based on R/M and MOD

MOD		Memory mode		Registe	r mode	
	Calc	11				
R/M	00	01	10	W = 0	W = 1	
0 0 0	(BX)+(SI)	(BX)+(SI)+D8	(BX)+(SI)+D16	AL	AX	
0 0 1	(BX)+(DI)	(BX)+(DI)+D8	(BX)+(DI)+D16	CL	СХ	
0 1 0	(BP)+(SI)	(BP)+(SI)+D8	(BP)+(SI)+D16	DL	DΧ	
0 1 1	(BP)+(DI)	(BP)+(DI)+D8	(BP)+(DI)+D16	BL	вх	
1 0 0	(SI)	(SI)+D8	(SI)+D16	АН	SP	
1 0 1	(DI)	(DI)+D8	(DI)+D16	СН	BP	
1 1 0	Direct address	(BP)+D8	(BP)+D16	DH	SI	
1 1 1	(BX)	(BX)+D8	(BX)+D16	вн	DI	

Note 31: D8: 8-bit displacement variable, D16: 16-bit displacement variable

Table 2 Register code

F	REC	3	W = 0	W = 1
0	0	0	AL	AX
0	0	1	CL	cx
0	1	0	DL	DX
0	1	1	BL	вх
1	0	0	АН	SP
1	0	1	СН	BP
1	1	0	DH	SI
1	1	1	вн	DI

Segment override prefix

0	0	1	SR	1	1	0

Segment register code

SR	SEG
0 0	ES
0 1	cs
10	SS
1 1	DS

2. Effective Address (EA) Calculation Time

EA configura	ation	Segment register used	Computing time
Displacement only	Direct address	DS	6 (clocks)
Base or index register	ВР	SS	
	BX, SI, DI	DS	5
Displacement + base or index register	(BP + D8 or D16)	SS	
(BX + D8	or D16, S1 + D8 or D16, D1 + D8 or D16)	DS	9
Base register + index register	BP+DI	SS	-
	BX+SI	DS	1
	BP+SI	SS	
	BX+DI	DS	8
Displacement + base register + index register	BP + DI + D8 or D 16	SS	11
	BX + SI + D8 or D16	DS	11
	BP+SI+D8 or D16	SS	40
	BX + DI + D8 or D16	DS	12

Note 32: When the segment override prefix is used the segment register used (column 2) is changed to the segment register specified by [0 0 1 SR 1 1 0 and 2 clock cycles must be added to the time (column 3) above.

3. Flag Register

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	-1	0
ſ	Х	Х	Х	Х	OF	DF	IF	TF	SF	ZF	Х	ΑF	Х	PF	Х	CF
_																

High-order 8 bits

Low-order 8 bits

Table 3 Flag code and name

OF: overflow flag When an arithmetic overflow occurs, when 2 operands are exclusive ORed up to the high-order bit and the high-order bit

bit is 1, OF is set. : direction flag IF

: interrupt enable flag

TF : trap flag SF : sign flag When the high-order bit is 1, SF is set.

ZF : zero flag When the result is zero, ZF is set. ΑF : auxiliary flag When there is a borrow from the low-order 4 bits, AF is set. PF : parity flag When the number of 1's in the low-order 8 bits is even, PF is set. When a carry is generated from the high-order bit, CF is set. CF : carry flag

OF, SF, ZF, AF, PF and CF are set/reset after the operation is completed.

8086 INSTRUCTION SET MATRIX

<u> </u>						-			T		·			Γ			
D7~ C	04	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
D ₃ nota	ecima tion	0	1	2	3	4	5	6	7	8	9	А	В	C	D	E	F
0000	0	ADD b,ear	ADC b,ear	AND b,ear	XOR b,ear	INC AX	PUSH AX		10		NOP	MOV AL←m	M0V AL←i			L00PNZ /L00PNE	LOCK
0001	1	ADD w, ear	ADC w, ear	AND w, ear	XOR w, ear	INC CX	PUSH CX		JNO	See table	XCHG CX	MOV AX←m	M0V CL←i	_	See table	LOOPZ/ LOOPE	_
0010	2	ADD b, rea	ADC b,rea	AND b, rea	XOR b,rea	INC DX	PUSH DX	-	JB/ JNAE	below	XCHG DX	M0V AL←m	M0V DL←i	RET (i+SP)	below	LOOP	REP z=0
0011	3	ADD w, rea	ADC w, rea	AND w, rea	XOR w, rea	INC BX	PUSH BX		JNB/ JAE		XCHG BX	MOV AX←m	M0V BL←i	RET		JCXZ	REP z=1
0100	4	ADD b, ia	ADC b,i	AND b,i	XOR b,i	INC SP	PUSH SP	_	JE/ JZ	TEST b,ea	XCHG SP	MOVS b	M0V AH←i	LES	ААМ	IN b	HLT
0101	5	ADD w, ia	ADC w, i	AND w, i	XOR w, i	INC BP	PUSH BP		JNE/ JNZ	TEST w,ea	XCHG BP	MOVS w	M0V CH←i	LDS	AAD	IN w	СМС
0110	6	PUSH ES	PUSH SS	SEG ES	SEG SS	INC SI	PUSH SI	_	JBE/ JNA	XCHG b,ea	XCHG SI	CMPS b	M0V DH←i	MOV b,ea,i	_	OUT b	See table
0111	7	POP ES	POP SS	DAA	AAA	INC DI	PUSH DI		JNBE/ JA	XCHG w, ea	XCHG DI	CMPS w	M0V BH←i	MOV w,ea,i	XLAT	OUT w	below
1000	8	OR b,ear	SBB b,ear	SUB b,ear	CMP b,ear	DEC AX	POP AX	_	ıs	MOV b,ear	CBW	TEST b,i,a	M0V AX←i		ESC 0	CALL d	CLC
1001	9	OR w, ear	SBB w, ear	SUB w, ear	CMP w, ear	DEC CX	POP CX	_	JNS	MOV w, ear	CWD	TEST w,i,a	M0V CX←i		ESC 1	JMP	STC
1010	Α	OR b,rea	SBB b, rea	SUB b, rea	CMP b,rea	DEÇ DX	POP DX	number of	JP/ JPE	MOV b, rea	CALL I, d	STOS b	M0V DX←i	RET I, (i+SP)	ESC 2	JMP 1, d	CLI
1011	В	OR w, rea	SBB w, rea	SUB w, rea	CMP w, rea	DEC BX	POP BX		JNP/ JP0	MOV w, rea	WAIT	STOS w	M0V BX←í	RET I	ESC 3	JMP si,d	STI
1100	С	OR b,i	SBB b,i	SUB b,i	CMP b,i	DEC SP	POP SP		JL/ JNGE	MOV easr	PUSHF	LODS b	M0V SP←i	INT type 3	ESC 4	IN b, v = 1	CLD
1101	D	OR w, i	SBB w,i	SUB w,i	CMP w, i	DEC BP	POP BP		JNL/ JGE	LEA	POPF	LODS w	M0V BP←i	INT (any)	ESC 5	IN w, v = 1	STD
1110	E	PUSH CS	PUSH DS	SEG CS	SEG DS	DEC SI	POP SI		JLE/ JNG	MOV srea	SAHF	SCAS b	M0V SI←i	INTO	ESC 6	OUT b, v = 1	See table
1111	F		POP DS	DAS	AAS	DEC DI	POP DI		JNLE /JG	POP ea	LAHF	SCAS w	MOV DI←i	IRET	ESC 7	OUT w,v=1	below

TABLE GROUP INSTRUCTION CODE LIST

mod□r/m	000	001	0 1 0	0,11	100	101	1 1 0	111
immed	ADD	OR	ADC	SBB	AND	SUB	XOR	СМР
Shift	ROL	ROR	RCL	RCR	SHL/ SAL	SHR		SAR
Grp 1	TEST		NOT	NEG	MUL	IMUL	DIV	IDIV
Grp 2	INC	DEC	CALL id	CALL I, id	JMP id	JMP 1, id	PUSH	

Note 33: Special symbols used only in the "Instruction set matrix" and the "Group Instruction Code List".

EA effective address (including register mode), REG register

b : byte operation

w : Word operation

because the result and function

are undefined a : accumulator

d : direct address

ea : calculation of EA

ear : processing results of EA and REG are transferred to EA

i : immediate data

EA are transferred to REG

: immediate set:

accumulator exterious

srea: (SR) ← (EA)

id : indirect address is : immediate data in sign v : variable

extended form I : segment is included in ← : shows direction of transfer. the jump

m : memory

Note 34: The length of instructions varies from 1 byte (8 bits) to 6 bytes. The "Instruction Set Matrix" is ordered by the hexadecimal value of the first byte of the instruction. The instruction and its operands (an instruceasr: (EA) + (SR) real: processing results of REG and tion may have no operand) are listed in mnemonic or symbolic form.

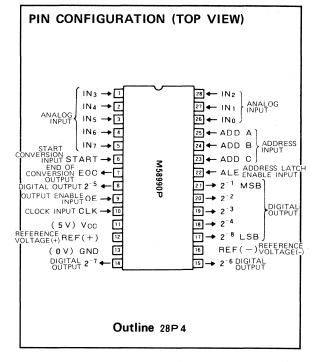
The group instructions (those instructions with different functions - : this code should not be used ia : immediate data and si : sign of 8 byte displacement is depending on bit D₅ , D₄ , D₃ in the second word of the instruction) are shown in the "Group Instruction Code List"

LSIs FOR PERIPHERAL CIRCUITS

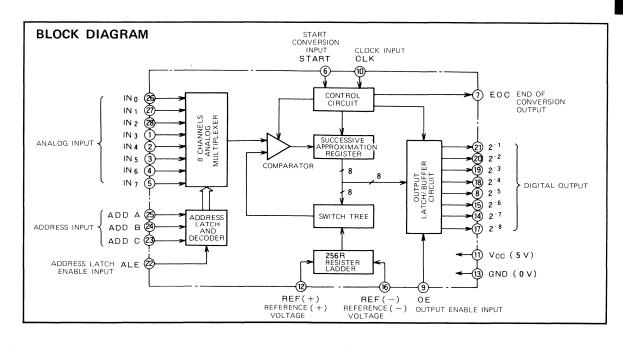
DESCRIPTION

The M58990P A-D converter is used to convert analog signals to 8-bit digital values. The A-D converter is fabricated using silicon-gates and CMOS technology. The M58990P can selectively multiplex 8 channels of analog input.

FEATURES


- Single 5V power supply
- Conversion resolution of 8 bits
- Broad range of analog input voltages: 0V ~ V_{CC}
- Conversion time: 100μs
- Conversion by successive approximation
- Can be used online through the data bus of a microprocessor
- The I/O pins can be connected directly to TTL circuits
- Interchangeable with NS's ADC0808 (in pin configuration)

APPLICATION


Used with microcomputers to control analog systems

FUNCTION

The M58990P has eight analog input terminals that are selected by the input signals to the 3 address terminals (ADD A \sim ADD C). The address signals of these terminals are read and latched in the internal address latches by the ALE signal. When the OE terminal is at low-level, the output terminals $2^{-1} \sim 2^{-8}$ are in a floating state so they can be connected directly to the data bus of a microcomputer.

The input terminal START is used to call for the start of an analog to digital conversion and a signal is output through terminal EOC when the conversion is completed.

MITSUBISHI LSIS M58990P

8-BIT 8-CHANNEL A-D CONVERTER

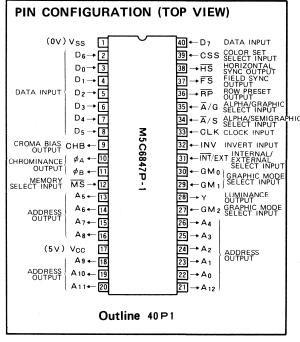
PIN DESCRIPTIONS

Pin	Name	Input or Output	Functions
IN ₀	Analog signal	Input	These are analog signal input pins. Which of the 8 inputs is selected, is determined by ADD A \sim ADD C. An analog voltage applied at the selected pin is converted to a digital value in the range of $2^{-1} \sim 2^{-8}$ and output.
ADD A	Address signal	Input	The input is used for selecting which of the 8 terminals $IN_0 \sim IN_7$ is to be converted from analog to digital. The address input through ADD A \sim ADD C is read to the address latch by the riseing edge of ALE.
ALE	Address latch enable signal	Input	This is the strobe signal which causes the address signal input through ADD A \sim ADD C to be read and latched for use as an internal address.
REF(+)	Reference voltage (+)	Input	This is one of the input terminals for the reference voltage that is applied to the 256R resistor ladder circuit. The other terminal is REF (-) and the voltage levels of these two inputs must meet the condition: REF (+) > REF (-).
REF(-)	Reference voltage (—)	Input	This is one of the input terminals for the reference voltage that is applied to the 256R resistor ladder circuit. The other terminal is REF (+) and the voltage levels of these two inputs must meet the condition: REF (+) > REF (-).
OE	Output enable signal	Input	The signal at this pin controls the digital output. When the signal is low-level, pins $2^{-1} \sim 2^{-8}$ are in a floating state. When it is high-level, the data is output.
2-1	Digital signal	Output	The analog signal, which was input through $IN_0 \sim IN_7$, is converted to digital data and is output from these terminals. When OE is low-level, these terminals are floating. When OE is high-level, the converted digital data is output. The MSB is 2^{-1} and the LSB is 2^{-8}
EOC	End of conversion signal	Output	This terminals is used to indicate the completion of an analog to digital conversion. It is reset by a START signal (high-level to low-level) and is set on completion of the conversion (low-level to high-level). This output is normally used to generate an interrupt request for the CPU.
START	Start conversion signal	Input	The input signal at this terminal is used to start a conversion cycle by setting the successive approximation register. The successive approximation register is reset by rising from low-level to high-level and conversion is started after being set by falling from high-level to low-level.
CLK	Clock input	Input	The signal at this terminal is the basic clocking signal used to determine internal timing.

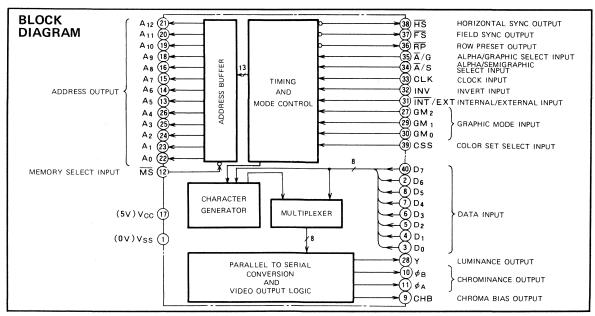
DESCRIPTION

The M5C6847P-1 is a color or monochrome television interface device, frabricated using N-channel silicon gate ED-MOS technology. The M5C6847P-1 has a 64-character (6-bit ASCII code) generator and memory interface.

FEATURES


- Can be easily connected to the MELPS 85 series 8-bit CPUs.
- Alphanumeric display: 4 modesGraphic display: 8 modes
- Can connect directly with the M51342P RF modulator
- Alphanumeric display: 32 characters per line by 16 lines
- Character generator for 64 ASCII characters
- Can be used with an external character generator
- Generates composite video signals
- Generates intensity signal Y, color signal R-Y (ϕ A) and B-Y (ϕ B)
- Display RAM capacity (depends on mode): 512~6K bytes
- Single 5V power supply
- Interchangeable with the Motorola's MC6847P in pin configuration

APPLICATION


 Microcomputer system or terminals using a color or monochrome CRT.

FUNCTION

The picture on the television set is composed of the syn-

chronization signals such as horizontal synchronization signal, vertical synchronization signal and color burst signal, and syncronizing serial data. M5C6847P-1 can generate these signals. The information or data to be shown on the screen is written in the display memory by the CPU. (When the picture is to be composed on a CRT) the data for one screen in the display memory is read in the order of the scan cycles and synchronization signals are added. This

VIDEO DISPLAY GENERATOR

serial is sent to the RF modulator. The M5C6847P-1 performs these functions by reading the display memory in the order of the CRT scan, adding the required synchronization signals such as luminance signal, color signal and then transferring the data stream serially to the RF modulator.

OPERATION

Address Outputs $(A_{12} \sim A_0)$

Thirteen address lines are used by the M5C6847P-1 to access the display memory (refresh memory). The starting address of the display memory is located at the upper-left corner of the display screen. As the television sweeps from the left to right and top to bottom, the VDG increments the RAM display address. The address lines are TTL-compatible and may be forced in a high-impedance state when input $\overline{\text{MS}}$ goes low.

Data Input $(D_7 \sim D_0)$

Eight TTL-compatible data lines are used to input data from the display memory to be processed by the M5C-6847P-1. The data is interpreted and transformed into video analog level signals.

Video Output (Y, ϕ_A , ϕ_B , CHB)

These video outputs are used to transfer luminance and color information of pictures displayed on television with standard NTSC systems. These outputs can be directly connected to the RF modulator M51342P.

Luminance Output (Y)

The luminance output is a 6-level analog output. The six level analog outputs contain composite, blank, and four levels of video intensity.

Chrominance Output (ϕ_A)

The chrominance output ϕ_A is a 3-level analog output. The signal is used in combination with ϕ_B and Y to specify one of eight colors.

Chrominance Output (ϕ_B)

The chrominance output ϕ_B is a 4-level analog output. These levels of the signal are used in combination with ϕ_A and Y to specify one of eight colors. The other level is used to specify the time of the color burst reference signal.

Chroma Bias Output (CHB)

The chroma bias output is a single level analog output that provides the DC reference for chrominance outputs.

Synchronization Input (MS, CLK)

Memory Select Input (MS)

This is a TTL compatible input. When it goes low-level, address outputs $(A_{12}\sim A_0)$ are forced in high-impedance state. When other devices such as the CPU access the display memory, it must be kept at low-level to prevent interference.

Clock input (CLK)

The clock input requires a 3.579545 MHz clock with a duty cycle of 50±5%. The M51342P RF modulator may

be used to supply the 3.579545 MHz clock.

Synchronization output (FS, HS, RP)

The synchronization outputs FS, HS and RP are TTL-compatible and provide circuits, exterior to the M5C6847P-1 states.

Table 1 Operation modes

Ā/G	Ā/S	INT/EXT	INV	GM ₂	GM ₁	GM_0	Mode
0	0	. 0	0	X	X	Χ	Internal alphanumerics
0	0	0	1	×	×	X	Internal alphanumerics inverted
0	0	1	0	X	Х	Х	External alphanumerics
0	0	1	1	×	×	X	External alphanumerics inverted
0	1	0	Х	X	Х	Х	Semigraphics 4
0	1	1	Х	X	Х	Х	Semigraphics 6
1	Х	×	X	0	0	0	64× 64 Color graphics
1	Х	X	Х	0	0	1	128× 64 Graphics
1	Х	X	×	0	1	0	128× 64 Color graphics
1	Х	X	Х	0	1	1	128× 96 Graphics
1	Χ	X	Х	- 1	0	0	128× 96 Color graphics
1	Х	X	Х	1	0	1	128×192 Graphics
1	Х	X	Х	1	1	0	128×192 Color graphics
1	Х	Х	X	1	1	1	256 × 192 Graphics

Note 1: X is "don't care" bit

Table 2 Alphanumeric mode display memory, color and display element

Mode	Memory capacity (bits)	Color	Display elements
Internal alphanumerics	512×8	2	8 dots Character is 5 x 7 dots 12 dots
External alphanumerics	512×8	2	8 dots 12 dots
Semigraphics 4	512×8	8	Elements 64×32
Semigraphics 6	512×8	4	Elements 64×48

Table 3 Graphic mode display memory, color and display element

Mode	Memory capacity (bits)	Color	Display elements
64× 64 Color graphics	1K×8	4	64×64
128× 64 Graphics 128× 64 Color graphics	1K×8 2K×8	2	128×64
128× 96 Graphics 128× 96 Color graphics	2K×8 3K×8	2	128×96
128×192 Graphics 128×192 Color graphics	3K×8 6K×8	2	128×192
256×192 Graphics	6K×8	2	256×192

Field synchronization output (FS)

The high to low transition of the \overline{FS} output coincides with the end of active display area. The low to high transition of \overline{FS} coincides with the trailing edge of the vertical synchronization pulse. The CPU should not access display memory while \overline{FS} is at low-level to avoid undesired flicker on the screen.

Horizontal synchronization output (HS)

This signal is used for horizontal synchronization on the CRT. A fall from high-level to low-level indicates the leading edge of the horizontal synchronization signal.

Row preset output (RP)

This signal can be used when an external character generator ROM that is used with the VDG. An external 4-bit binary counter must also be added to supply row selection.

The counter is clocked by the \overline{HS} signal and cleared by the \overline{RP} signal. See Table 4 ② for details.

Mode Control Inputs $(\overline{A}/G, \overline{A}/S, \overline{INT}/EXT, GM_2, GM_1, GM_0, CSS and INV)$

These eight TTL-compatible input signals are used to determine and control the operational modes of the M5C6847P-1. Outline and details of the operational modes are shown in Table $1\sim3$.

Alphanumeric mode

A screen in the alphanumeric mode is composed of 32 characters x 16 lines. Each character occupies space equivalent to an 8 x 12 dot matrix. The internal character generator can generate 64 characters (6-bit ASCII). Each character is formed by a 5 x 7 dot matrix. The low-order 6 bits of the 8-bit data input are used to select 1 of 64 characters and the remaining 2 bits can be used to implement the CSS and INV signal inputs. Operation in this mode requires a display memory of a least 512 bytes.

Semigraphic 4 mode

A screen in the semigraphics 4 mode is composed of 64×32 display elements. A display element is a 4×6 dot matrix; that is to say, each 8×12 character dot matrix is split into 4 display elements, each display element being a 4×6 dot matrix. The low-order 4 bits of the 8-bit data input correspond to the 4 display elements of a character. Three data bits of the remaining 4 bits may be used to select one of eight colors for the entire character box. The extra bit is available to switch the operation mode. Operation in this mode requires a display memory of at least 512 bytes. Semigraphics 6 mode

A screen in the semigraphics 6 mode is composed of 64×48 display elements. A display element is a 4×4 dot matrix; that is to say, each 8×12 character dot matrix is split into 6 display elements, each display element being a 4×4 dot matrix. The low-order 6 bits of the 8-bit data input to the 6 display elements of a character and the remaining 2 bits

are used to determine color. Operation in this mode re-

quires a display memory of at least 512 bytes.

Full Graphic Modes

There are 8 full graphic modes. The border color (green or white) is selected by the level of the CSS signal. The CSS pin selects one of two sets of four colors in the four color graphic modes.

Color Graphic Mode 64 x 64

A screen in the 64×64 color graphic mode is composed of 64×64 display elements. Each display element can be 1 of 4 colors. Operation in this mode requires a display memory of at least 1024 bytes.

Graphic mode 128 x 64

A screen in the 128×64 graphic mode is composed of 128×64 display elements. Each display element can be green or white depending on the level of the CSS signal. Operation in this mode requires a display memory of at least 1024 bytes.

Color graphic mode 128 x 64

A screen in the 128 x 64 color graphic mode is composed of 128 x 64 display elements. Each display element can be 1 of 4 colors. Operation in this mode requires a display memory of at least 2048 bytes.

Graphic mode 128 x 96

A screen in the 128×96 graphic mode is composed of 128×96 picture elements. Each display element can be geeen or white depending on the level of the CSS signal. Operation in this mode requires a display memory of at least 2048 bytes.

Color graphic mode 128 x 96

A screen in the 128 x 96 color graphic mode is composed of 128 x 96 display elements. Each display element can be 1 of 4 colors. Operation in this mode requires a display memory of at least 3072 bytes.

Graphic mode 128 x 192

A screen in the 128 x 192 graphic mode is composed of 128 x 192 display elements. Each display element can be green or white depending on the level of the CSS signal. Operation in this mode requires a display memory of at least 3072 bytes.

Color graphic mode 128 x 192

A screen in the 128×192 color graphic mode is composed of 128×192 display elements. Each picture element can be 1 of 4 colors. Operation in this mode requires a display memory of at least 6144 bytes.

Graphic mode 256 x 192

A screen in the 256×192 graphic mode is composed of 256×192 display elements. Each display element can be green or white depending on the level of the CSS signal. Operation in this mode requires a display memory of at least 6144 bytes.

Details of the 8 graphic modes are shown in Table 4 which gives more information in an easy to understand form.

VIDEO DISPLAY GENERATOR

Table 4 Operational characteristics in the various graphic modes

Color graphic mode 128x192 Color graphic mode 128x96 Color graphic mode 64x64 Graphic mode 256x192 Graphic mode 128x192 Display Mode Graphic mode 128x64 Graphic mode 128x64 Graphic mode 128x96 Semigraphics 4 mode Semigraphics 6 mode Alphanumeric mode Alphanumeric mode ĥ External ROM Code ASCII Code Ē μ Ψ Data Bus Ę, S S _uminance E3 ٥ Color TV Screen (1 screen is composed of 256×192 dots) character group are the same color. The color intensity is 0 (black) or 1 (full color). All 4 picture elements of the character group are the same color. The color intensity is 0 (black) or 1 (full color). E₀ 2 Dots 2Dots 7 6 5 4 3 2 1 0 3Dots 7 6 5 4 3 2 1 0 3 2 Dots E3 E2 E1 E0 3Dots D₃ D₂ 6 Dots Ds Da 4 Dots 1Dot All 6 picture elements of the E2 E1 E0 3 Dots Display Elements 2 Dots E₃ E₂ E₁ E₀ D₃ D₂ D1 D0 D, D₀ 2 Dots 8x12 Dots 1 Character Ę, Ę, 128×64 display elements 128×96 display elements 128×192 display elements 256 × 192 display elements display elements 16 lines of 32 characters display 128×192 display elements 16 lines of 32 characters $\mathbf{64} \times \mathbf{32}$ 64×48 $64\!\times\!64$ 128×64 elements elements display 128×96 display Mode display green white white white Border white white green white green green black black black black black black green green black white cyan magenta orange cyan magenta orange Background (D₅, D₄, D₃, D₂, D₁, D₀) black green yellow biue red green yellow blue red black .D₁, D₀) black green black white black orange white white black green plack green cyan .Ds. D4. D3. D2. °×0-0-×0-0-Character Color 6 same as (5) The same as 6 The same as (5) The same as 6 as green black orange black orange 7×00--×00--The same as green black black g 0 - 0 same 0-0-<u>6</u> 0 -0-The 000-00--60-The ₹ × 0 -0 0 0 × × css _ 0 0 0 0 0 _ 0 0 0 0 0 GMo × × × 0 _ Ŝ. -0 × INT/EXT GM2 _ × × × 0 0 × 0 × Ā/S --× × × A/G _ 0 -_ MS -(2) Θ 0 0 € 6 6 0 ∞ 6 (2) 9

VIDEO DISPLAY GENERATOR

Internal Character Generator

The M5C6847P-1 generates the 64 standard ASCII characters in a 5 x 7 dot matrix form. It generates the 64 standard ASCII characters according to a 6-bit code. The code for each character is showed in Table 5.

Table 5 M5C6847P-1 character set

		Co	ode			CI				Co	ode			Character
D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Character		D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Character
0	0	0	0	0	0	(a		1	0	0	0	0	0	SP
0	0	0	0	0	1	Α		1	0	0	0	0	1	1
0	0	0	0	1	0	В		1	0	0	0	1	0	,,
0	0	0	0	1	1	С		1	0	0	0	1	1	#
0	0	0	1	0	0	D		1	0	0	1.	0	0	\$
0	0	0	1	0	1	E		1	0	0	1	0	1	%
0	0	0	1	1	0	F		1	0	0	1	1	0	&
0	0	0	1	1	1	G		1	0	0	1	1	1	,
0	0	1	0	0	0	н		1	0	. 1	0	0	0	(
0	0	1	0	0	1	- 1		1	0	1	0	0	1)
0	0	1	0	1	0	J		1	0	1	0	1	0	*
0	0	1	0	1	1	K		1	0	1	0	1	1	+
0	0	1	1	0	0	L		1	0	1	1	0	0	,
0	0	1	1	0	1	M		1	0	1	1	0	1	_
0	0	1	1	1	0	N		1	0	1	1	1	0	
0	0	1	1	1	1	0		1	0	1	1	1	1	1
0	1	0	0	0	0	Р		1	1	0	0	0	0	0
0	1	0	0	0	1	Q	l	1	1	0	0	0	1	1
0	1	0	0	1	0	R	١.	1	1	0	0	1	0	2
0	1	0	0	1	1	S		1	1	0	0	1	1	3
0	1	0	1	0	0	Т		1	1	0	1	0	0	4
0	1	0	1	0	1	U		1	1	0	1	0	1	5
0	1	0	1	1	0	\ \ \		1	1	0	1	1	0	6
0	1	0	1	1	1	W	۱	1	1	0	1	1	1	7
0	. 1	1	0	0	0	X		1	1	1	0	0	0	8
0	1	1	0	0	1	Y		1	1	1	0	0	1	9
0	1	1	0	1	0	Z (1	1	1	0	1	0	:
0	1	1	0	1	1	Ĺ		1	1	1	0	1	1	;
0	1	1	1	0	0	/		1	1	1	1	0	0	<
0	1	1	1	0	1) ↑		1	1	1	1	0	1	=
0	1	1	1	1	0	1		1	1	1	1	1	0	>
0	1	1	1	1	1	-		1	_1_	1	1	1	1	?

EXAMPLE OF DISPLAY ON CRT

The M5C6847P-1 can be used to generate characters for display on a video screen. An example of a display is shown in Fig. 1.

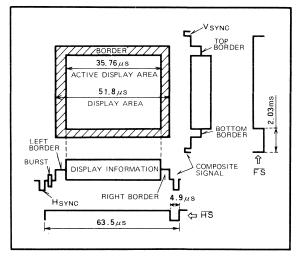


Fig. 1 Example of a display by a M5C6847P-1

APPLICATION EXAMPLE

One example of interfacing a M5C6847P-1 with a television set for home use is shown in Fig. 2. A M5L8085AP is used as the CPU in the example shown. The CPU executes the programs to control display and write the information for one screen into display memory. The M5C6847P-1 performs the main functions of interfacing with the CRT such as synchronizing scan, reading the display information from the display memory while adding necessary synchronization signals and sending to the RF modulator.

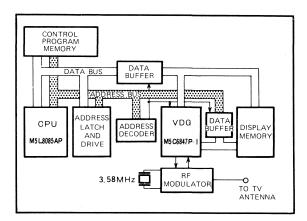


Fig. 2 Application example using the M5C6847P-1

VIDEO DISPLAY GENERATOR

A schematic for using the M5C6847P-1 with the M51342P RF modulator is shown in Fig. 3. M51342 requires ±5V power supplies. The video signal and chroma signal from the M5C6847P-1 can be modulated with the sound signal to form a RF signal that appears the same as the television antenna input signal. The video amp circuit to

enable direct connection to a M5C6847P-1 is shown in Fig. 4. This can be connected to the monochrome video monitor. In this case, the inpedance is 75Ω .

Four levels of brightness (black, low, medium and high) can display a clear picture.

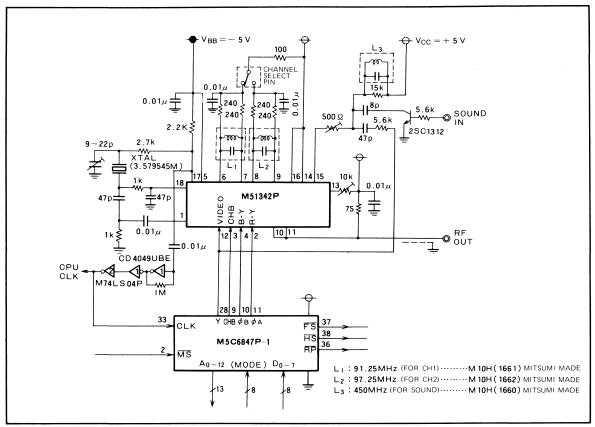


Fig. 3 Schematic for using the M51342P (RF modulator) with the M5C6847P-1

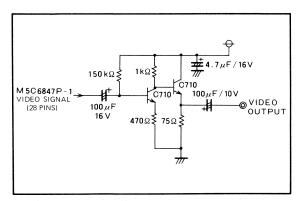
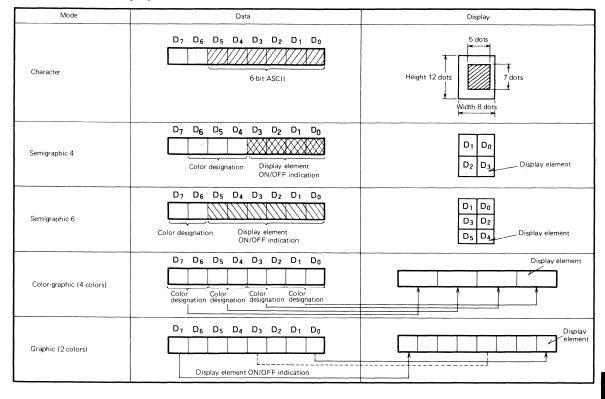


Fig. 4 Video amp circuit



٤

Data and Display Relation

The relation between data and 5 display modes is shown in Table 6.

Table 6 Data and display relation

VIDEO DISPLAY GENERATOR

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.3~7	V
VI	Input voltage	With respect to V _{SS}	-0.3~7	V
Vo	Output voltage		-0.3-7	V
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		− 65~ 150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta=0\sim70^{\circ}C$, unless otherwise noted)

Symbol	Parameter			Unit	
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.75	5	5 .25	V
Vss	Supply voltage		0		٧
V _{IH} (φ)	High-level input voltage, clock	2.4		Vcc	V
VIH	High-level input voltage	2		Vcc	٧
VIL (ø)	Low-level input voltage, clock	-0.3		0.4	٧
VIL	Low-level input voltage	-0.3		0.8	V

$\textbf{ELECTRICAL CHARACTERISTICS} \text{ (Ta} = 0 \sim 70^{\circ}\text{C} \text{ , V}_{OC} = 5\text{V} \pm 5\% \text{, unless otherwise noted)}$

Symbol	Parameter	Test conditions	Limits			Unit
			Min	Тур	Max	Onit
VoH	High-level output voltage, except for φ _A , φ _B , Y, and CHB output	$V_{SS} = 0V$, $I_{OH} = -100 \mu A$, $C_L = 30 pF$	2.4			V
VoL	Low-level output voltage, except for ϕ_A , ϕ_B , Y and CHB output	V _{SS} =0V, I _{OL} =1.6mA, C _L =30pF			0.4	V
I _{IH}	High-level input current	V _{SS} =0V, V _I =5.25V	- 10		10	μА
111	Low-level output current	V _{SS} =0V, V _I =0V	— 10		10	μА
loz	Output floating leak current	V _{SS} =0V, V _I =0.4V, MS=0.4V	- 10		10	μА
Icc	Supply current from V _{CC}	V _{SS} =0V			150	mA
Ci	Input capacitance	V _I =0V, f=1MHz, Ta=25°C			10	pF
Co	Output capacitance				20	pF
V _{CHB}	Chroma bias voltage	V_{SS} =0 V , C_L =20 pF , R_L =200 $k\Omega$		0.6V _{CC}		V
V _φ Α, Η	$\phi_{ m A}$ chrominance high-level output voltage			V _{CHB} + 0.16V _{CC}		V
V _{ØA, M}				V _{CHB}		V
V _{ØA, L}	$\phi_{ m A}$ chrominance low-level output voltage			V _{CHB} – 0 . 16V _{CC}		V
V _{ØB, H}	ø B chrominance high-level output voltage			V _{CHB} + 0.16V _{CC}		V
V _Ø B, M				VCHB	-	V
V _{ØB,B}	ΦB chrominance burst-level output voltage			V _{CHB} - 0.08V _{CC}		V
V _{ØB,L}				V _{CHB} - 0.16V _{CC}	-	V
Vysync	Luminance sync output voltage			0.74V _{CC}		V
Vyblank	Luminance blank output voltage			0.85 Vysync		٧
Vyblack	Luminance black output voltage			0.81 Vysync		V
V _{YW} (H)	White luminance high-level output voltage			0.62 Vysync		V
V _{YW} (M)	White luminance medium-level output voltage			0.69 Vysync		V
V _{YW} (L)	White luminance low-level output voltage			0.77 VYSYNC		V

M5C6847P-1

VIDEO DISPLAY GENERATOR

TIMING REQUIREMENTS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, $V_{SS} = 0V$, unless otherwise noted)

Symbol	Parameter	Test conditions		Unit		
		rest conditions	Min	Тур	Max	Onit
f _{C (ø)}	Clock frequency		3.579535	3.579545	3.579555	MHz
f DUTY	Clock duty ratio		45	50	55	%
t _{r (ø)}	Clock rise time				10	ns
t _{f(ø)}	Clock fall time				10	ns
ta(A-D)I	Address access time of display memory	Internal character mode			900	ns
t _{a(A-D)E}	Address access time of display memory + Address access time of external character ROM	External character mode			900	ns

SWITCHING CHARACTERISTICS

Composite video and chroma ($Ta=0\sim70^{\circ}C$, $V_{CC}=5V\pm5\%$, $V_{SS}=0V$, unless otherwise noted)

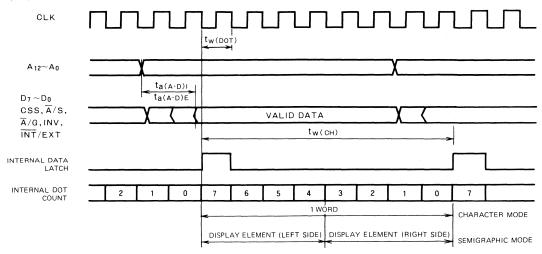
Symbol	Parameter	Test conditions					
Symbol	rarameter	rest conditions	Min	Тур	Max	Unit	
t _{w (YSYNC)}	Luminance output synchronization signal pulse width			4.89		μS	
t _{w (YFP)}	Luminance output front pot signal pulse width			1.96		μS	
t _{w (YHBLANK)}	Luminance output horizontal blank signal pulse width			11.73		μS	
t _{r (YHSYNC)}	Luminance output horizontal synchronization signal rise	time			250	ns	
t _{f (YHSYNC)}	Luminance output horizontal synchronization signal fall	time			250	ns	
t _{r (YHBLANK)}	Luminance output horizontal blank signal rise time				340	ns	
t _f (YHBLANK)	Luminance output horizontal blank signal fall time				340	ns	

CHROMA

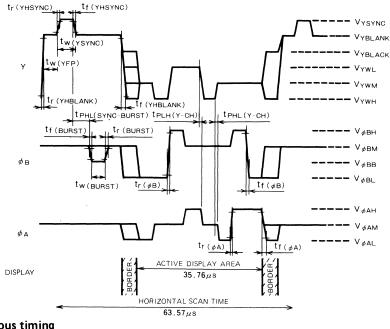
Symbol			Limits			
	Parameter	Test conditions	Min	Тур	Max	Unit
t _{r (\$\phi A)}	ϕ A chrominance output rise time	4		60		ns
t _{f (øA)}	$\phi_{ {\sf A}}$ chrominance output fall time			60		ns
t _{r (øB)}	φB chrominance output rise time			60		ns
t _{f (øB)}	ϕ B chrominance output fall time			60		ns
t _{PHL} (SYNC-BURST)	ΦB chrominance output propagation time after luminance syncronization signal output			980		ns
tw (BURST)	ϕ B chrominance output burst signal pulse width			2.93		μS
t _{r (BURST)}	ϕ B chrominance output burst signal rise time			60		ns
tf (BURST)	ϕ B chrominance output burst signal fall time			60		ns
t _{PHL (Y-CH)}	Chrominance propagation time after luminance			0		
t _{PLH(Y-CH)}	output			"		ns

MISCELLANEOUS

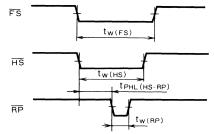
Symbol	Parameter	Test conditions		Unit		
	ratametei	rest conditions	Min	Тур	Max	Oill
t _{w (FS)}	Field syncronization pulse width			2.03		ms
t _{w (RP)}	Row preset pulse width			980		ns
t _{PHL} (HS-RP)	RP propagation time after HS			980		ns
t _{w (HS)}	Horizontal syncronization pulse width			4.9		μS
t _{w (CH)}	Character width			1.12		μs
t _{w (DOT)}	Dot width			140		ns



M5C6847P-1


VIDEO DISPLAY GENERATOR

TIMING DIAGRAM


Display memory access

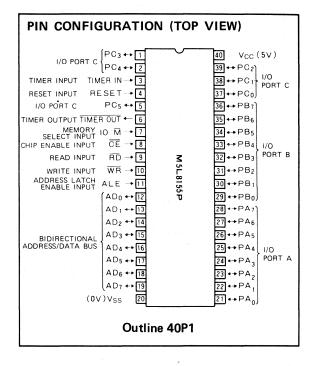
Composite video and chroma

Miscellaneous timing

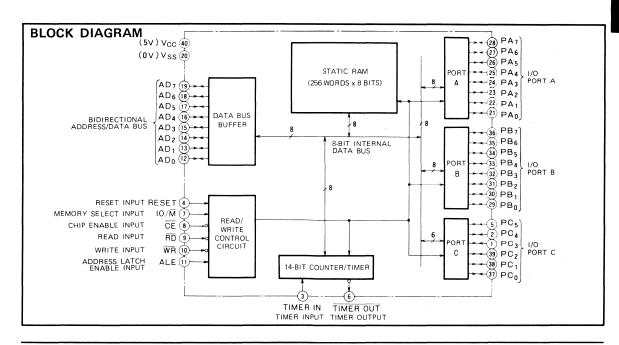
DESCRIPTION

The M5L8155P is a 2K-bit RAM (256-word by 8-bit) fabricated with the N-channel silicon-gate ED-MOS technology. This IC has 3 I/O ports and a 14-bit counter/timer which make it a good choice to extend the functions of an 8-bit microcomputer. It is incased in a 40-pin plastic DIL package and operates with a single 5V power supply.

FEATURES


- Compatible with MELPS 85 devices
- Static RAM: 256 words by 8 bits
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14 bits
- Multiplexed address/data bus
- Single 5V power supply
- Interchangeable with Intel's P8155 in pin
- Configuration and electrical characteristics

APPLICATION


 Extension of I/O ports and timer function for MELPS 8/85 and MELPS 8-48 devices

FUNCTION

The M5L8155P is composed of RAM, I/O ports and counter/timer. The RAM is a 2K-bit static RAM organized as 256 words by 8 bits. The I/O ports consist of 2 programmable 8-bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed to function

as control terminals for the 8-bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14 bits that can be used to count down (events or time) and it can generate square wave pulses that can be used for counting and timing.

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data by interpreting I/O control bus output signals (\overline{RD} , \overline{WR} , IO/ \overline{M} and ALE) along with CPU signal (\overline{CE}). RESET signal is also used to control the transfer of data and commands.

Bidirectional Address/Data Bus (AD $_0 \sim AD_7$)

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, memory address is selected.

The 8-bit address data is transferred by read input (\overline{RD}) or write input (\overline{WR}).

Chip Enable Input (CE)

When \overline{CE} is at low-level, the address information on address/data bus is stored in the M5L8155P

Read Input (RD)

When \overline{RD} is at low-level the data bus buffer is active. If IO/\overline{M} input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/\overline{M} input is at high-level, the selected contents of I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or if IO/\overline{M} is at high-level they are written into I/O port, counter/timer or command register.

Address Latch Enable Input (ALE)

An address on the address/data bus along with the levels of CE and IO/\overline{M} are latched in the M5L8155P on the falling edge of ALE.

IO/Memory Input (IO/M)

When IO/\overline{M} is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A (PA₀ \sim PA₁)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB $_0 \sim PB_7$)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC $_0 \sim PC_5$)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port

C is used to output control signals of ports A or B the assigment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function
PC ₅	B STB	(port B strobe)
PC ₄	B BF	(port B buffer full)
PC ₃	BINTR	(port B interrupt)
PC ₂	A STB	(port A strobe)
PC ₁	A BF	(port A buffer full)
PC ₀	A INTR	(port A interrupt)

Timer Input (TIMER IN)

The signal at this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The low-order 4 bits (bits $0 \sim 3$) are used for controlling and determination of the mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (address I/O XXXXX000).

Details of the functions of the individual bits of the command register are shown in Fig. 1.

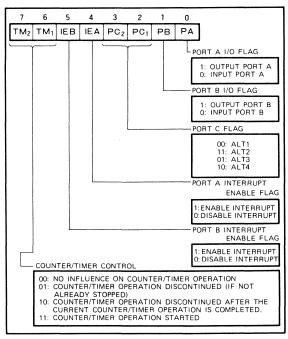


Fig. 1 Bit functions of the command register

Status Register (7 bits)

The status register is a 7-bit latched register. The low-order 5 bits (bits $0 \sim 4$) are used as status flags for the I/O ports. Bit 6 is as a status flag for the counter/timer. The

contents of the status register are transferred into the CPU by reading (INPUT instruction, address I/O XXXXX000). Details of the functions of the individual bits of the status register are shown in Fig. 2.

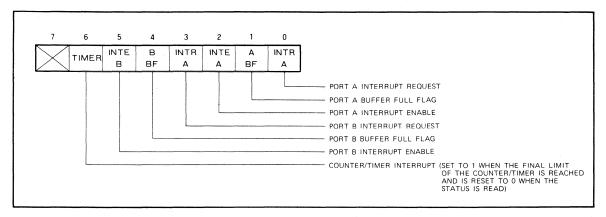


Fig. 2 Bit functions of the status register

I/O Ports

Command/status registers (8 bits/7 bits)

These registers are assigned address XXXXX000. When executing an OUTPUT instruction, the contents of the command register are rewritten. When executing an INPUT instruction the contents of the status register are read.

Port A Register (8 bits)

Port A register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Fig. 1.

Port A can be operated in basic or strobe mode and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8 bits)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Fig. 1. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$. Port C Register (6 bits)

Port C register is assigned address XXXXX011. This port is used for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Fig. 1. Details of the functions of the various setting of bits 2 and 3 are shown in Table 2. Port C is assigned I/O terminals $PC_0 \sim PC_5$ and when used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 2 Functions of port C

State Terminal	ALT1	ALT2	ALT 3	ALT 4
PC ₅	Input	Output	Output	B STB (port B strobe)
PC ₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

Configuration of Ports

A block diagram of 1 bit of ports A and B is shown in Fig. 3. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

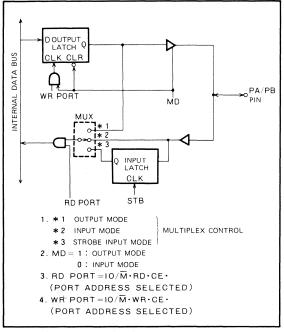


Fig. 3 Configuration for 1 bit of port A or B

The basic functions of the I/O ports are shown in Table 3. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 4.

Table 3 Basic functions of I/O ports

Address	RD	WR	Function
XXXXX000	0	1	AD bus ← status register
***************************************	- 1	0	Command register ← AD bus
VVVVV001	0	1	AD bus ← port A
XXXXX001	1	0	Port A ← AD bus
XXXXX010	0	1	AD bus ← port B
^^^^	1	0	Port B ← AD bus
XXXXX011	0	1	AD bus ← port C
^^^^	1	0	Port C ← AD bus

Table 4 Port control signal levels at ALT3 and ALT4

Control signal	Input mode	Output mode
BF	"L"	"L"
INTR	"L"	"H"
STB	Input	Input

Counter/Timer

The counter/timer is a 14-bit counting register plus 2 mode flags. The register has two sections: address I/O XXXXX100 is assigned to the low-order 8 bits and address I/O XXXXX101 is assigned to the high-order 8 bits. The low-order bits $0 \sim 13$ are used for counting or timing. The counter is initialized by the program and then counted down to zero. The initial setting can range from 2_{16} to $3FFF^{-}_{16}$. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follow:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation

Mode 1: Outputs square wave signals as in mode 0

Mode 2: Outputs a low-level pulse during the final count down

Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Fig. 1 for details). The format and timer modes of the counter/timer register are shown in Fig. 4 and Table 5.

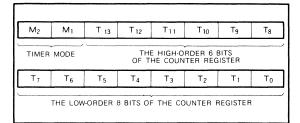


Fig. 4 Format of counter/timer

ing is discontinued. To resume counting, a start command must be written into the command register as shown in Fig. 1. While operating 2n+1 count down in mode 0, a high-level signal is output during the n+1 counting and a low-level signal is output during the n counting.

The counter/timer is not influenced by a reset, but count-

Table 5 Timer mode

M ₂	M ₁	Timer operation
0	0	Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation (mode 0)
0	-1	Outputs square wave signals as in mode 0 (mode 1)
1	0	Outputs a low-level pulse during the final count down (mode 2)
1	1	Outputs a low-level pulse during each final count down (mode 3)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
VI	Input voltage	With respect to V _{SS}	-0.5-7	٧
Vo	Output voltage		− 0.5 ~ 7	V
Pd	Maximum power dissipation	Ta = 25°C	1.5	w
Topr	Operating free-air temperature range		0 ~ 70	°C
Tstg	Storage temperature range		−65∼150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted)

Symbol	Parameter		Limits			
			Nom	Max	Unit	
Vcc	Supply voltage	4.75	.2	5.25	V	
V _{SS}	Power-supply voltage		0		V	
VIL	Low-level input voltage	-0.5		0.8	٧	
VIH	High-level input voltage	2		V _{CC} + 0.5	٧	

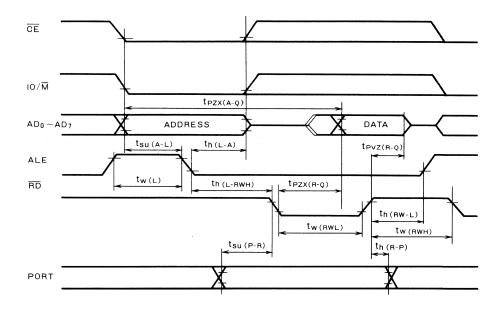
ELECTRICAL CHARACTERISTICS ($Ta = 0 - 70^{\circ}C$, $V_{CC} = 5V + 5\%$, unless noted)

Symbol	P	Total or a distance				
	Parameter	Test conditions	Min	Тур	Max	Unit
VoH	High-level output voltage	V _{SS} =0V, I _{0H} =-400μA	2.4			V
VoL	Low-level output voltage	V _{SS} =0V, I _{OL} =2mA			0.45	V
11.	Input leak current	V _{SS} =0V. V _I =0~V _{CC}	- 10		10	μА
I _I (CE)	Input leak current, CE pin	$V_{SS}=0V$, $V_{I}=0\sim V_{CC}$	— 100		100	μΑ
loz	Output floating leak current	Vss=0V, V _I =0.45-V _{CC}	— 10		10	μА
Ci	Input capacitance	V_{IL} =0 V , f=1 MHz , 25 $mVrms$, Ta = 25 $^{\circ}C$			10	pF
Ci/o	Input/output terminal capacitance	$V_{I/OL}$ =0V, f=1MHz, 25mVrms, Ta = 25°C			20	pF
Icc	Supply current from V _{CC}	V _{SS} =0V			180	mA

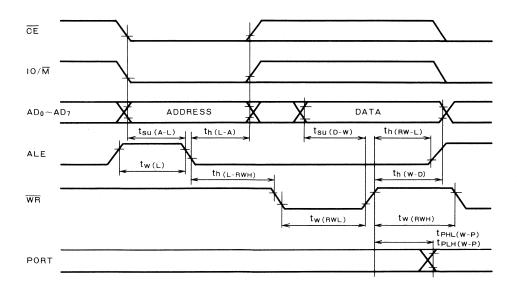
Note 5 Current flowing into an IC is positive, out is negative.

TIMING REQUIREMENTS (Ta=0 \sim 70°C , V_{CC} =5V \pm 5%, unless otherwise noted)

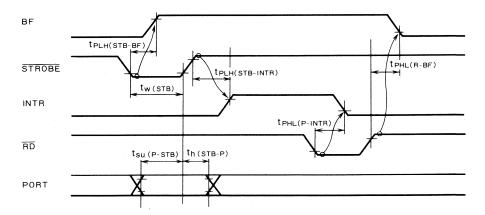
	Parameter	Alternative	T		Limits			
Symbol		symbol	Test conditions	Min	Тур	Max	Unit	
t _{su (A-L)}	Address setup time before latch	tAL		50	-		ns	
th (L-A)	Address hold time after latch	t _{LA}		80			ns	
th(L-RWH)	Read/write hold time after latch	t _{LC}		100			ns	
t _{w(L)}	Latch pulse width	t _{LL}		100			ns	
th (RW-L)	Latch hold time after read/write	t _{CL}		20			ns	
tw(RWL)	Read/write low-level pulse width	t _{cc}		250			ns	
t _{su (D-W)}	Data setup time before write	t _{DW}		150			ns	
t _{h (W-D)}	Data hold time after write	two		0			ns	
tw(RWH)	Read/write high-level pulse width	t _{RV}		300			ns	
t _{su (P-R)}	Port setup time before read	tpR		70			ns	
th (R-P)	Port hold time after read	t _{RP}	,	50			ns	
tw(STB)	Strobe pulse width	t _{SS}		200			ns	
t _{su (P-STB)}	Port setup time before strobe	t _{PSS}		50			ns	
th (STB-P)	Port hold time after strobe	tpHS		120			ns	
t _{w(\$\phi H)}	Timer input high-level pulse width	t ₂		120			ns	
t _{w(øL)}	Timer input low-level pulse width	t ₁		80			ns	
t _{C (φ)}	Timer input cycle time	toyo		320			ns	
t _{r (\$\phi\$)}	Timer input rise time	tr				30	ns	
t _{f (φ)}	Timer input fall time	tf				30	ns	

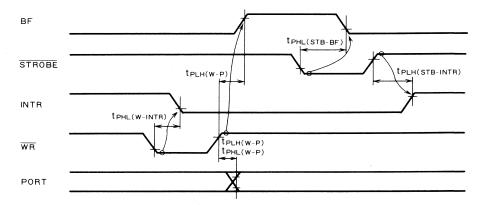

SWITCHING CHARACTERISTICS ($Ta=0\sim70^{\circ}C$, $V_{CC}=5V\pm5\%$, unless otherwise noted.)

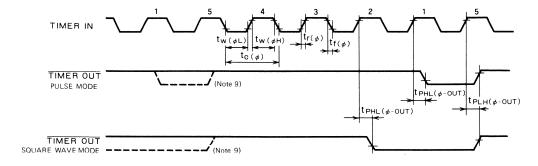
Symbol	Parameter	Alternative		Unit			
Symbol		symbol		Min	Тур	Max	Onit
t _{PZX(R-Q)}	Propagation time from read to data output	t _{RD}				170	ns
t _{PZX(A-Q)}	Propagation time from address to data output	t _{AD}				400	ns
t _{PVZ(R-Q)}	Propagation time from read to data floating (Note 7)	t _{RDF}				100	ns
t _{PHL(W-P)}	Diiiiiii	twp				400	
t _{PLH(W-P)}	Propagation time from write to data output	t _{wP}				400	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag	t _{SBF}				400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	t _{RBE}				400	ns
t _{PLH} (STB-INTR)	Propagation time from strobe to interrupt	t _{SI}				400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	t _{RDI}				400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag	t _{SBE}				400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag	twer				400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt	twi				400	ns
t _{PHL(ø-OUT)}	D	t _{TL}					
t _{PLH(ø-OUT)}	Propagation time from timer input to timer output	t _{TH}				400	ns


Note 6: Measurement conditions C = 150pF 7: Measurement conditions of note 6 are not applied.

TIMING DIAGRAM (reference level, high-level=2V, low-level=0.8V)


Basic Input


Basic Output


Strobed Input

Strobed Output

Timer (Note 8)

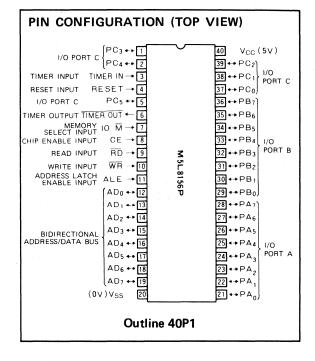
Note 8: The wave form is shown counting down from 5 to 1.

9: As long as the M1 mode flag of the timer register is at high-level, pulses are continuously output.

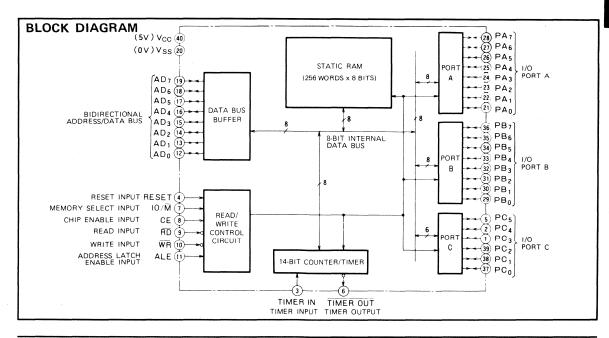
DESCRIPTION

The M5L8156P is a 2K-bit RAM (256-word by 8-bit) fabricated with the N-channel silicon-gate ED-MOS technology. This IC has 3 I/O ports and a 14-bit counter/timer which make it a good choice to extend the functions of an 8-bit microcomputer. It is incased in a 40-pin plastic DIL package and operates with a single 5V power supply.

FEATURES


- Compatible with MELPS 85 devices
- Static RAM: 256 words by 8 bits
- Programmable 8-bit I/O port: 2
- Programmable 6-bit I/O port: 1
- Programmable counter/timer: 14 bits
- Multiplexed address/data bus
- Single 5V power supply
- Interchangeable with Intel's P8156 in pin
- Configuration and electrical characteristics

APPLICATION


 Extension of I/O ports and timer function for MELPS 8/85 and MELPS 8-48 devices

FUNCTION

The M5L8156P is composed of RAM, I/O ports and counter/timer. The RAM is a 2K-bit static RAM organized as 256 words by 8 bits. The I/O ports consist of 2 programmable 8-bit ports and 1 programmable 6-bit port. The terminals of the 6-bit port can be programmed to function

as control terminals for the 8-bit ports, so that the 8-bit ports can be operated in a handshake mode. The counter/timer is composed of 14 bits that can be used to count down (events or time) and it can generate square wave pulses that can be used for counting and timing.

M5L8156P

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

OPERATION

Data Bus Buffer

This 3-state bidirectional 8-bit buffer is used to transfer the data while input or output instructions are being executed by the CPU. Command and address information is also transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic controls the transfer of data by interpreting I/O control bus output signals (\overline{RD} , \overline{WR} , IO/ \overline{M} and ALE) along with CPU signal (CE). RESET signal is also used to control the transfer of data and commands.

Bidirectional Address/Data Bus $(AD_0 \sim AD_7)$

The bidirectional address/data bus is a 3-state 8-bit bus. The 8-bit address is latched in the internal latch by the falling edge of ALE. Then if IO/\overline{M} input signal is at high-level, the address of I/O port, counter/timer, or command register is selected. If it is at low-level, memory address is selected.

The 8-bit address data is transferred by read input (\overline{RD}) or write input (\overline{WR}).

Chip Enable Input (CE)

When CE is at high-level, the address information on address/data bus is stored in the M5L8156P.

Read Input (RD)

When \overline{RD} is at low-level the data bus buffer is active. If IO/\overline{M} input signal is at low-level, the contents of RAM are read through the address/data bus. If IO/\overline{M} input is at high-level, the selected contents of I/O port or counter/timer are read through the address/data bus.

Write Input (WR)

When \overline{WR} is at low-level, the data on the address/data bus are written into RAM if IO/\overline{M} is at low-level, or if IO/\overline{M} is at high-level they are written into I/O port, counter/timer or command register.

Address Latch Enable Input (ALE)

An address on the address/data bus along with the levels of CE and IO/\overline{M} are latched in the M5L8156P on the falling edge of ALE.

IO/Memory Input (IO/M)

When IO/\overline{M} is at low-level, the RAM is selected, while at high-level the I/O port, counter/timer or command register are selected.

I/O Port A ($PA_0 \sim PA_1$)

Port A is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port B (PB $_0 \sim PB_7$)

Port B is an 8-bit general-purpose I/O port. Input/output setting is controlled by the system software.

I/O Port C (PC $_0 \sim PC_5$)

Port C is a 6-bit I/O port that can also be used to output control signals of port A (PA) or port B (PB). The functions of port C are controlled by the system software. When port C is used to output control signals of ports A or B the assigment of the signals to the pins is as shown in Table 1.

Table 1 Pin assignment of control signals of port C

Pin		Function					
PC ₅	BSTB	(port B strobe)					
PC ₄	B BF	(port B buffer full)					
PC ₃	BINTR	(port B interrupt)					
PC ₂	A STB	(port A strobe)					
PC ₁	A BF	(port A buffer full)					
PC ₀	A INTR	(port A interrupt)					

Timer Input (TIMER IN)

The signal at this input terminal is used by the counter/timer for counting events or time. (3MHz max.)

Timer Output (TIMER OUT)

A square wave signal or pulse from the counter/timer is output through this pin when in the operation mode.

Command Register (8 bits)

The command register is an 8-bit latched register. The low-order 4 bits (bits $0 \sim 3$) are used for controlling and determination of the mode of the ports. Bits 4 and 5 are used as interrupt enable flags for ports A and B when port C is used as a control port. Bits 6 and 7 are used for controlling the counter/timer. The contents of the command register are rewritten by output instructions (address I/O XXXXX000).

Details of the functions of the individual bits of the command register are shown in Fig. 1.

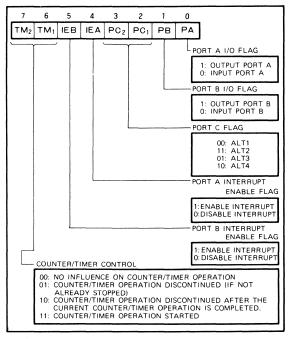


Fig. 1 Bit functions of the command register

Status Register (7 bits)

The status register is a 7-bit latched register. The low-order 5 bits (bits $0\sim4$) are used as status flags for the I/O ports. Bit 6 is as a status flag for the counter/timer. The

contents of the status register are transferred into the CPU by reading (INPUT instruction, address I/O XXXXX000). Details of the functions of the individual bits of the status register are shown in Fig. 2.

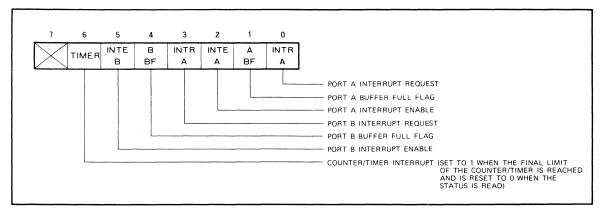


Fig. 2 Bit functions of the status register

I/O Ports

Command/status registers (8 bits/7 bits)

These registers are assigned address XXXXX000. When executing an OUTPUT instruction, the contents of the command register are rewritten. When executing an INPUT instruction the contents of the status register are read.

Port A Register (8 bits)

Port A register is assigned address XXXXX001. This register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Fig. 1.

Port A can be operated in basic or strobe made and is assigned I/O terminal $PA_0 \sim PA_7$.

Port B Register (8 bits)

Port B register is assigned address XXXXX010. As with Port A register, this register can be programmed as an input or output by setting the appropriate bits of the command register as shown in Fig. 1. Port B can be operated in basic or strobe mode and is assigned I/O terminals $PB_0 \sim PB_7$. Port C Register (6 bits)

Port C register is assigned address XXXXX011. This port is used for controlling input/output operations of ports A and B by selectively setting bits 2 and 3 of the command register as shown in Fig. 1. Details of the functions of the various setting of bits 2 and 3 are shown in Table 2. Port C is assigned I/O terminals $PC_0 \sim PC_5$ and when used as port control signals, the 3 low-order bits are assigned for port A while the 3 high-order bits are assigned for port B.

Table 2 Functions of port C

State Terminal	ALT1	ALT2	ALT 3	ALT 4
PC ₅	Input	Output	Output	BSTB (port B strobe)
PC ₄	Input	Output	Output	B BF (port B buffer full)
PC ₃	Input	Output	Output	B INTR (port B interrupt)
PC ₂	Input	Output	A STB (port A strobe)	A STB (port A strobe)
PC ₁	Input	Output	A BF (port A buffer full)	A BF (port A buffer full)
PC ₀	Input	Output	A INTR (port A interrupt)	A INTR (port A interrupt)

M5L8156P

2048-BIT STATIC RAM WITH I/O PORTS AND TIMER

Configuration of Ports

A block diagram of 1 bit of ports A and B is shown in Fig. 3. While port A or B is programmed as an output port, if the port is addressed by an input instruction, the contents of the selected port can be read. When a port is put in input mode, the output latch is cleared and writing into the output latch is disabled. Therefore when a port is changed to output mode from input mode, low-level signals are output through the port. When a reset signal is applied, all 3 ports (PA, PB, and PC) will be input ports and their output latches are cleared. Port C has the same configuration as ports A and B in modes ALT1 and ALT2.

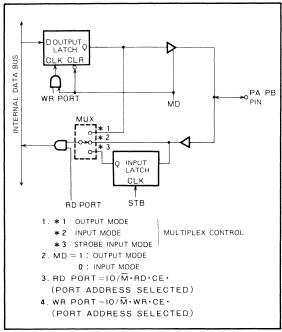


Fig. 3 Configuration for 1 bit of port A or B

The basic functions of the I/O ports are shown in Table 3. The control signal levels to ports A and B, when port C is programmed as a control port, are shown in Table 4.

Table 3 Basic functions of I/O ports

Address	RŌ	WR	Function
XXXXX000	0	1	AD bus ← status register
*****	1	0	Command register ← AD bus
XXXXX001	0	1	AD bus ← port A
************	1	0	Port A ← AD bus
XXXXX010	0	1	AD bus ← port B
************	1	0	Port B ← AD bus
XXXXX011	0	1	AD bus ← port C
**********	1	0	Port C ← AD bus

Table 4 Port control signal levels at ALT3 and ALT4

Control signal	Input mode	Output mode
BF	"L"	"L"
INTR	"∟"	"H"
STB	Input	Input

Counter/Timer

The counter/timer is a 14-bit counting register plus 2 mode flags. The register has two sections: address I/O XXXXX100 is assigned to the low-order 8 bits and address I/O XXXXX101 is assigned to the high-order 8 bits. The low-order bits $0 \sim 13$ are used for counting or timing. The counter is initialized by the program and then counted down to zero. The initial setting can range from 2_{16} to $3FF_{16}$. Bits 14 and 15 are used as mode flags.

The mode flags select 1 of 4 modes with functions as follow:

Mode 0: Outputs high-level signal during the former half of the counter operation

Outputs low-level signal during the latter half of the counter operation

Mode 1: Outputs square wave signals as in mode 0

Mode 2: Outputs a low-level pulse during the final count down

Mode 3: Outputs a low-level pulse during each final count down

Starting and stopping the counter/timer is controlled by bits 6 and 7 of the command register (see Fig. 1 for details). The format and timer modes of the counter/timer register are shown in Fig. 4 and Table 5.

level signal is output during the n counting.

The counter/timer is not influenced by a reset, but counting is discontinued. To resume counting, a start command

must be written into the command register as shown in

Fig. 1. While operating 2n+1 count down in mode 0, a high-

level signal is output during the n+1 counting and a low-

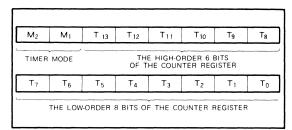


Fig. 4 Format of counter/timer

Table 5 Timer mode

M ₂	M ₁	Timer operation
0	0	Outputs high-level signal during the former half of the counter operation Outputs low-level signal during the latter half of the counter operation (mode 0)
0	- 1	Outputs square wave signals as in mode 0 (mode 1)
1	0	Outputs a low-level pulse during the final count down (mode 2)
1	1	Outputs a low-level pulse during each final count down (mode 3)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
VI	Input voltage	With respect to V _{SS}	-0.5-7	V
Vo	Output voltage		-0.5~7	V
Pd	Maximum power dissipation	Ta = 25°C	1.5	w
Topr	Operating free-air temperature range		0 ~ 70	°C
Tstg	Storage temperature range		− 65~ 150	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 70°C, unless otherwise noted)

Symbol	Parameter -		Limits			
Symbol			Nom	Max	Unit	
Vcc	Supply voltage	4.75	•5	5.25	V	
Vss	Power-supply voltage		0		V	
VIL	Low-level input voltage	-0.5		0.8	V	
VIH	High-level input voltage	2		V _{CC} +0.5	V	

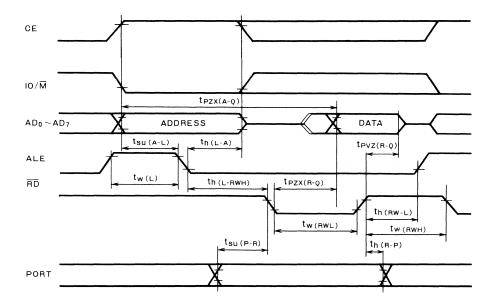
$\textbf{ELECTRICAL CHARACTERISTICS} \ \, (\, \text{T\,a} = 0 \, \sim \, 70\,^{\circ}\text{C} \, \, , \ \, \text{V}_{\text{CC}} = 5\text{V} \, + \, 5\% \, , \, \, \text{unless otherwise noted} \,)$

Symbol	Parameter	Test conditions		Unit		
Symbol	rai ameter	rest conditions	Min	Тур	Max	Onit
VoH	High-level output voltage	V _{SS} =0V, I _{OH} = -400μA	2.4			V
VoL	Low-level output voltage	V _{SS} =0V, I _{OL} =2mA			0.45	V
I ₁	Input leak current	Vss = 0V, VI = 0 - Vcc	- 10		10	μА
I _{I (CE)}	Input leak current, CE pin	V _{SS} =0V, V _I =0~V _{CC}	— 100		100	μА
loz	Output floating leak current	V _{SS} =0V, V _I =0.45~V _{CC}	10		10	μА
Ci	Input capacitance	$V_{IL}=0V$, $f=1MHz$, $25mVrms$, $Ta=25$ °C			10	pF
Ci/o	Input/output terminal capacitance	$V_{I/OL} = 0V$, $f = 1MHz$, $25mVrms$, $Ta = 25°C$			20	pF
loc	Supply current from V _{CC}	V _{SS} = 0V			180	mA

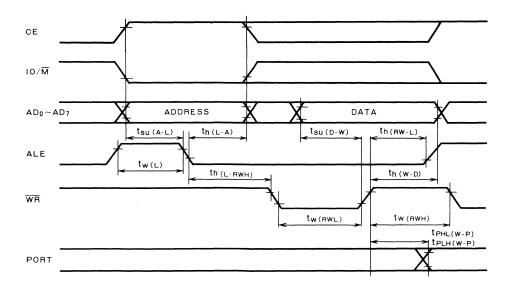
Note 5 Current flowing into an IC is positive, out is negative.

TIMING REQUIREMENTS ($Ta = 0 - 70^{\circ}C$, $V_{CC} = 5V + 5\%$, unless otherwise noted)

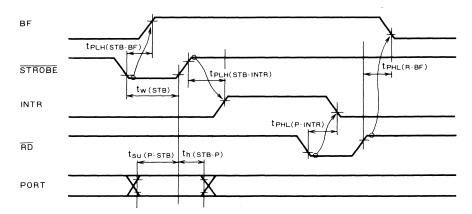
0	Parameter	Alternative	Test conditions		Limits			
Symbol		symbol		Min	Тур	Max	Unit	
t _{su (A-L)}	Address setup time before latch	tAL		50			ns	
th (L-A)	Address hold time after latch	t _{LA}		80			ns	
th(L-RWH)	Read/write hold time after latch	t _{LC}		100			ns	
t _{w(L)}	Latch pulse width	t _{LL}		100			ns	
th (RW-L)	Latch hold time after read/write	toL		20	-		ns	
tw(RWL)	Read/write low-level pulse width	too		250			ns	
t _{su (D-W)}	Data setup time before write	t _{DW}		150			ns	
th (W-D)	Data hold time after write	two		0			ns	
tw(RWH)	Read/write high-level pulse width	t _{RV}		300			ns	
t _{su (P-R)}	Port setup time before read	tpR		70			ns	
th (R-P)	Port hold time after read	t _{RP}		50			ns	
tw(STB)	Strobe pulse width	t _{SS}		200			ns	
t _{su (P-STB)}	Port setup time before strobe	t _{PSS}		50			ns	
th (STB-P)	Port hold time after strobe	t _{PHS}		120			ns	
t _{w(øH)}	Timer input high-level pulse width	t ₂		120			ns	
t _{w(øL)}	Timer input low-level pulse width	t ₁		80			ns	
t _{c (ø)}	Timer input cycle time	toyo		320			ns	
t _{r (ø)}	Timer input rise time	tr			-	30	ns	
t _{f (ø)}	Timer input fall time	tf				30	ns	

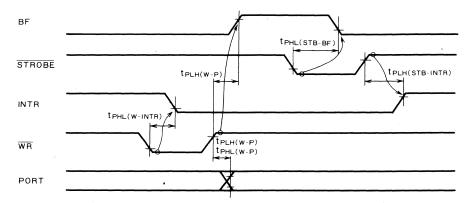

SWITCHING CHARACTERISTICS ($Ta=0\sim70^{\circ}C$, $V_{CC}=5V\pm5\%$, unless otherwise noted.)

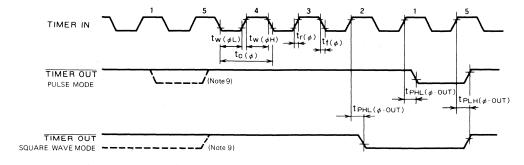
Symbol	Parameter	Alternative	Alternative	1	Unit		
Symbol		symbol		Min	Тур	Max	Unit
t _{PZX(R-Q)}	Propagation time from read to data output	t _{RD}				170	ns
t _{PZX(A-Q)}	Propagation time from address to data output	t _{AD}				400	ns
t _{PVZ(R-Q)}	Propagation time from read to data floating (Note 7)	t _{RDF}				100	ns
t _{PHL(W-P)}	Description direction distribution of the state of the st	t _{WP}				400	
t _{PLH(W-P)}	Propagation time from write to data output	t _{WP}				400	ns
t _{PLH(STB-BF)}	Propagation time from strobe to BF flag	t _{SBF}	•			400	ns
t _{PHL(R-BF)}	Propagation time from read to BF flag	t _{RBE}				400	ns
t _{PLH(STB-INTR)}	Propagation time from strobe to interrupt	t _{SI}				400	ns
t _{PHL(R-INTR)}	Propagation time from read to interrupt	t _{RDI}				400	ns
t _{PHL(STB-BF)}	Propagation time from strobe to BF flag	t _{SBE}				400	ns
t _{PLH(W-BF)}	Propagation time from write to BF flag	t _{wBF}				400	ns
t _{PHL(W-INTR)}	Propagation time from write to interrupt	twi				400	ns
t _{PHL(\$-OUT)}	D	t _{TL}					
t _{PLH(\$-OUT)}	Propagation time from timer input to timer output	t _{TH}				400	ns


Note 6: Measurement conditions C = 150pF 7: Measurement conditions of note 6 are not applied.

$\textbf{TIMING DIAGRAM} \ \ (\text{reference level, high-level=} 2V\text{, low-level=} 0.8V)$


Basic Input


Basic Output


Strobed Input

Strobed Output

Timer (Note 8)

Note 8: The wave form is shown counting down from 5 to 1.

9: As long as the M1 mode flag of the timer register is at high-level, pulses are continuously output.

MITSUBISHI LSIS

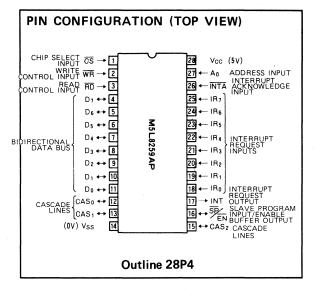
PROGRAMMABLE INTERRUPT CONTROLLER

DESCRIPTION

The M5L8259P is a programmable LSI for interrupt control. It is fabricated using N-channel silicon-gate ED-MOS technology and is designed to be used easily in connection with an M5L8080AP, M5L8085AP or M5L8086S.

FEATURES

- Single 5V power supply
- CALL instruction to the CPU is generated automatically
- Priority, interrupt mask and vectored address for each interrupt request input are programmable
- Up to 64 levels of interrupt requests can be controlled by cascading with M5L8259AP
- Polling functions
- TTL compatible
- Interchangeable with Intels P8259A in pin configuration and electrical characteristics.


APPLICATIONS

 The M5L8259AP can be used as an interrupt controller for CPUs M5L8080AP, M5L8085AP and M5L8086S

FUNCTIONS

The M5L8259AP is a device specifically designed for use in real time, interrupt driven microcomputer systems. It manages eight levels or request and has built-in features for expandability to other M5L8259AP's.

The priority and interrupt mask can be changed or reconfigured at any time by the main program.

When an interrupt is generated because of an interrupt request at 1 of the pins, the M5L8259AP based on the mask and priority will output an INT to the CPU. After that, when an INTA signal is received from the CPU or the system controller, a CALL instruction and a programmed vector address is released onto the data bus.

PIN DESCRIPTION

Symbol	Pin name	Input or output	Functional significance
cs	Chip select input	Input	This input is active at low-level, but may be at high-level during interrupt request input and interrupt processing.
WR	Write control input	Input	Command write control input from the CPU
RD	Read control input	Input	Data read control input for the CPU
D ₇ ~ D ₀	Bidirectional data bus	Input/ output	Data and commands are transmitted through this bidirectional data bus to and from the CPU.
CAS ₂ ~ CAS ₀	Cascade lines	Input/ output	These pins are outputs for a master and inputs for a slave. And these pins of the master will be able to address each individual slave. The master will enable the corresponding slave to release the device routine address during bytes 2 and 3 of INTA.
SP/EN	Slave program input/ Enable buffer output	Input/ output	SP: In normal mode, a master is designated when \$\overline{SP}/\overline{EN}=1\$ and a slave is designated when \$\overline{SP}/\overline{EN}=0\$. EN: In the buffered mode, whenever the M5L8259AP's data bus output is enabled, its \$\overline{SP}/\overline{EN}\$ pin will go low.
INT	Interrupt request output	Output	This pin goes high whenever a valid interrupt is asserted.
IR ₇ ∼IR ₀	Interrupt request input	Input	The asynchronous interrupt inputs are active at high-level. The interrupt mask and priority of each interrupt input can be changed at any time. When using edge triggered mode, the rising edge (low to high) of the interrupt request and the high-level must be held until the first INTA.
INTA	Interrupt acknowledge input	Input	When an interrupt acknowledge (INTA) from the CPU is received, the M5L8259AP releases a CALL instruction or vectored address onto the data bus.
Α ₀	A ₀ address input	Input	This pin is normally connected to one of the address lines and acts in conjunction with the $\overline{\text{CS}}$, $\overline{\text{WR}}$ and $\overline{\text{RD}}$ when writing commands or reading status registers.

OPERATION

The M5L8259AP is interfaced with a standard system bus as shown in Fig. 1 and operates as an interrupt controller.

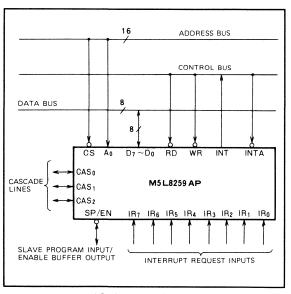


Table 1 M5L8259AP basic operation

A ₀	D ₄	D ₃	RD	WR	cs	Input operation (read)
0			0	1	0	IRR, ISR or interrupting level→data bus
1			0	1	0	IMR→Data bus
						Output operation (write)
0	0	0	1	0	0	Data bus→OCW2
0	0	1	1	0	0	Data bus→OCW3
0	1	×	1	0	0	Data bus→ICW1
11	X	X	1	0	0	Data bus→OCW1, ICW2, ICW3, ICW4
						Disable function
Х	Χ	Х	1	1	0	Data bus → High-impedance
X	×	X	X	Х	1	Data bus → High-impedance

Fig. 1 The M5L8259AP interfaces to standard system bus.

MISL8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

Interrupt Sequence

- 1. When the CPU is an M5L8080AP or M5L8085AP:
 - (1) When one or more of the interrupt request inputs are raised high, the corresponding IRR bit(s) for the high-level inputs will be set.
 - (2) Mask state and priority levels are considered and, if appropriate, the M5L8259AP sends an INT signal to the CPU.
 - (3) The acknowledgement of the CPU to the INT signal, the CPU issues an INTA pulse to the M5L-8259AP.
 - (4) The ISR bit corresponding to the interrupt request input is set upon receiving an INTA from the CPU, and the corresponding IRR bit is reset. A CALL instruction is released onto the data bus.
 - (5) A CALL is a 3-byte instruction, so additional INTA pulses are issued to the M5L8259AP from the CPU.
 - (6) These two INTA pulses allow the M5L8259AP to release the program address onto the data bus. The low-order 8-bit vectored address is released at the second INTA pulse and the high-order 8-bit vectored address is released at the third INTA pulse.
 - (7) This completes the 3-byte CALL instruction and the interrupt routine will be serviced. The ISR bit is reset at the end of the third INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued.
- 2. When the CPU is an M5L8086S:
 - (1) When one or more of the interrupt request inputs are raised high, the corresponding IRR bit(s) for the high-level inputs will be set.
 - (2) Mask state and priority levels are considered and if appropriated, the M5L8259AP sends an INT signal to the CPU.
 - (3) As an acknowledgement to the INT signal, the CPU issues an INTA pulse to the M5L8259AP.
 - (4) The ISR bit corresponding to the interrupt request input is set upon receiving the first INTA pulse from the CPU, and the corresponding IRR bit is reset. The M5L8259AP does not drive the data bus, and the data bus goes to high-impedance state.
 - (5) When the second NTA pulse is issued from the CPU an 8-bit pointer is released onto the data bus.
 - (6) This completes the interrupt cycle and the interrupt routine will be serviced. The ISR bit is reset at the end of the second INTA pulse in the AEOI mode. In the other modes the ISR bit is not reset until an EOI command is issued from the CPU.

The interrupt request input must be held at high-level until the first INTA pulse is issued. If it is allowed to re-

turn to low-level before the first $\overline{\text{INTA}}$ pulse is issued, an interrupt request in IR₇ is executed. However, in this case the ISR bit is not set.

Interrupt sequence outputs

1. When the CPU is a M5L8080AP or M5L8085AP:

A CALL instruction is released onto the data bus when the first INTA pulse is issued. The low-order 8 bits of the vectored address are released when the second INTA pulse is issued, and the high-order 8 bits are released when the third INTA pulse is issued. The format of these three outputs is shown in Table 2.

Table 2 Formats of interrupt CALL instruction and vectored address

First INTA pulse (CALL instruction)

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
1	1	0	0	1	1	0	1

Second INTA pulse (low-order 8-bit of vectored address)

IR				Interv	/al = 4			
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
IR ₇	Α7	Α ₆	A ₅	1	1	1	0	0
IR ₆	A ₇	A 6	A ₅	1	1	0	0	0
IR ₅	Α7	Α ₆	A ₅	1	0	1	0	0
IR ₄	Α7	Α ₆	A ₅	1	0	0	0	0
IR ₃	Α7	Α6	A ₅	0	1	1	0	0
IR ₂	A ₇	A ₆	A ₅	0	1	0	0	0
IR ₁	A ₇	Α ₆	A ₅	0	0	1	0	0
IR ₀	A ₇	Α ₆	A ₅	0	0	0	0	0
	-							

IR				Inter	val = 8			
	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
IR ₇	A ₇	A ₆	1	1	1	0	0	0
IR ₆	A 7	A ₆	1	1	0	0	0	0
IR ₅	A 7	Α6	1	0	1	0	0	0
IR ₄	A ₇	Α ₆	1	0	0	0	0	0
IR ₃	A ₇	Α6	0	1	1	0	0	0
IR ₂	Α7	Α6	0	1	0	0	0	0
IR ₁	Α7	Α6	0	0	1	0	0	0
IR ₀	A ₇	Α ₆	0	0	0	0	0	0

Third INTA pulse (high-order 8 bits of vectored address)

D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
A1:	A14	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	Α8

2. When the CPU is a M5L8086S:

The data bus goes to a high-impedance state when the first $\overline{\text{INTA}}$ pulse is issued. Then the pointer $T_7 \sim T_0$ is released when the next $\overline{\text{INTA}}$ pulse is issued. The content of the pointer $T_7 \sim T_0$ is shown in Table 3. The $T_2 \sim T_0$ are a binary code corresponding to the interrupt request level, $A_{10} \sim A_5$ are unused and ADI mode control is ignored.

Table 3 Contents of interrupt pointer

Second INTA pulse (8-bit pointer)

	D ₇	D ₆	. D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
IR ₇	Τ7	T ₆	Т5	Τ4	Тз	1	1	1
IR ₆	Т7	Τ6	T ₅	Τ4	Τ ₃	1	- 1	0
IR ₅	Τ7	T ₆	Т5	Τ4	Τ ₃	1	0	1
IR ₄	Τ,	Т6	Т5	Τ4	Т3	1	0	0
IR ₃	Т7	Τ6	Т5	Τ4	T ₃	0	1	1
IR ₂	Т7	T ₆	Т5	Τ4	T ₃	0	1	0
IR ₁	Т7	Т6	Т5	Τ4	Тз	0	0	1
IR ₀	Τ,	Т6	Т5	Τ4	T ₃	0	0	0

Interrupt Request Register (IRR), In-service Register (ISR)

As interrupt requests are received at inputs IR₇~IR₀, the corresponding bits of IRR are set and as an interrupt request is serviced the corresponding bit of ISR is set. The IRR is used to store all the interrupt levels which are requesting service, and the ISR is used to store all the interrupt levels which are being serviced. The status of these two registers can be read. These two registers are connected through the priority resolver.

An interrupt request received by IR_n is acknowledged on the leading edge when in the edge triggered mode or it is acknowledged on the level when in the level triggered mode. After that an INT signal is released and the interrupt request signal is latched in the corresponding IRR bit if the high-level is held until the first $\overline{\text{INTA}}$ pulse is issued. It is important to remember that the interrupt request signal must be held at high-level until the first $\overline{\text{INTA}}$ pulse is issued.

The interrupt request latching in the IRR causes a signal to be sent to the priority resolver unless it is masked out. When the priority resolver receives the signals it selects the highest priority interrupt request latched in IRR. The ISR is set when the first INTA pulse is issued while the corresponding bit of IRR is reset and the other bits of IRR are unaffected.

The bit of ISR that was set is not reset during the interrupt routine, but is reset at the end of the routine by the EOI command (end of interrupt) or by the last INTA pulse in AEOI mode.

Priority Resolver

The priority resolver examines all of the interrupt requests set in IRR to determine and selects the highest priority. The ISR bit corresponding to the selected (highest priority) request is set by the INTA pulse.

Interrupt Mask Register (IMR)

The contents of the interrupt mask register are used to mask out (disable) interrupt requests of selected interrupt request pins. Each terminal is independently masked so that masking a high priority interrupt does not influence the lower or higher priority interrupts. Therefore the contents of IMR selectively enable reading.

Interrupt Request Output (INT)

The interrupt request output connects directly to the interrupt input of the CPU. The output level is compatible with the input level required for the CPUs.

Interrupt Acknowledge Input (INTA)

The CALL instruction and vectored address are released onto the data bus by the INTA pulse.

Data Bus Buffer

The data bus buffer is a 3-state bidirectional data bus buffer that is used to interface with the system bus. Write commands to the M5L8259AP, CALL instructions, vectored addresses, status information, etc. are transferred through the data bus buffer.

Read/Write Control Logic

The read/write control logic is used to control functions such as receiving commands from the CPU and supplying status information to the data bus.

Chip Select (CS)

The M5L8259AP is selected (enabled) when $\overline{\text{CS}}$ is at low-level, but during interrupt request input or interrupt processing it may be high-level.

Write Control Input (WR)

When \overline{WR} goes to low-level the M5L8259AP can then write.

Read Control Input (RD)

When \overline{RD} goes low status information in the internal register of the M5L8259AP can be read through the data bus.

Address Input (A₀)

The address input is normally connected with one of the address lines and is used along with \overline{WR} and \overline{RD} to control write commands and reading status information.

Cascade Buffer/Comparator

The cascade buffer/comparator stores or compares identification codes. The three cascade lines are output when the M5L8259AP is a master or input when it is a slave. The identification code on the cascade lines select it as master or slave.

PROGRAMMING THE M5L8259AP

The M5L8259AP is programmed through the Initialization Command Word (ICW) and the operational command word (OCW). The following explains the functions of these two commands.

Initialization Command Words (ICSs)

The initialization command word is used for the initial setting of the M5L8259AP. There are 4 commands in this group and the following explains the details of these four commands.

ICW1

The meaning of the bits of ICW1 is explained in Fig. 3 along with the functions. ICW1 contains vectored address bits $A_7 \sim A_5$, a flag indicating whether interrupt input is edge triggered or level triggered, CALL address interval, whether a single M5L8259AP or the cascade mode is used, and whether ICW4 is required or not.

Whenever a command is issued with A_0 =0 and D_4 =1, this is interpreted as ICW1 and the following will automatically occur.

- (a) The interrupt mask register (IMR) is cleared.
- (b) The interrupt request input IR₇ is assigned the lowest priority.
- (c) The identification code for slave mode is set to 7.
- (d) The special mask mode is cleared and the status read is set to the interrupt request register (IRR).
- (e) When IC4=0 all bits in ICW4 are set to zero.

ICW₂

ICW2 contains vectored address bits $A_{15} \sim A_8$ or interrupt type $T_7 \sim T_3$, and the format is shown in Fig. 3.

ICW3

When SNGL=1 it indicates that only a single M5L8259AP is used in the system, in which case ICW3 is not valid. When SNGL=0, ICW3 is valid and indicates cascade connections with other M5L8259AP devices. In the master mode, a "1" is set for each slave.

When the CPU is an M5L8080AP or M5L8085AP the CALL instruction is released from the master at the first $\overline{\text{INTA}}$ pulse and the vectored address is released onto the data bus from the slave at the second and third $\overline{\text{INTA}}$ pulses.

When the CPU is a M5L8086S the master and slave are in high-impedance at the same time and the pointer is released onto the data bus from the slave at the next $\overline{\text{INTA}}$ pulse.

The master mode is specified when $\overline{SP}/\overline{EM}$ pin is high-level or BUF=1 and M/S=1 in ICW4, and slave mode is specified when $\overline{SP}/\overline{EM}$ pin is low-level or BUF=1 and M/S=0 in ICW4. In the slave mode, three bits ID₂~ID₀ identify the slave. And then when the slave code released on the cascade lines from the master, matches the assigned ID code, the vectored address is released by it onto the data bus at the next \overline{INTA} pulse.

ICW4

Only when IC4=1 in ICW1 is ICW4 valid. Otherwise all bits are set to zero. When ICW4 is valid it specifies special fully nested mode, buffer mode master/slave, automatic EOI and microprocessor mode. The format of ICW4 is shown in Fig. 3.

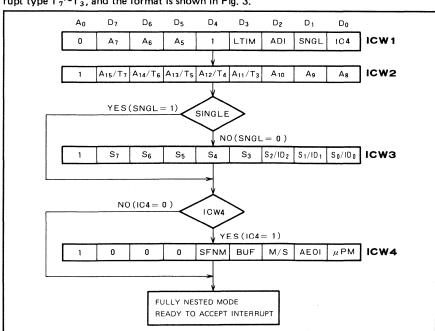


Fig. 2 Initialization sequence

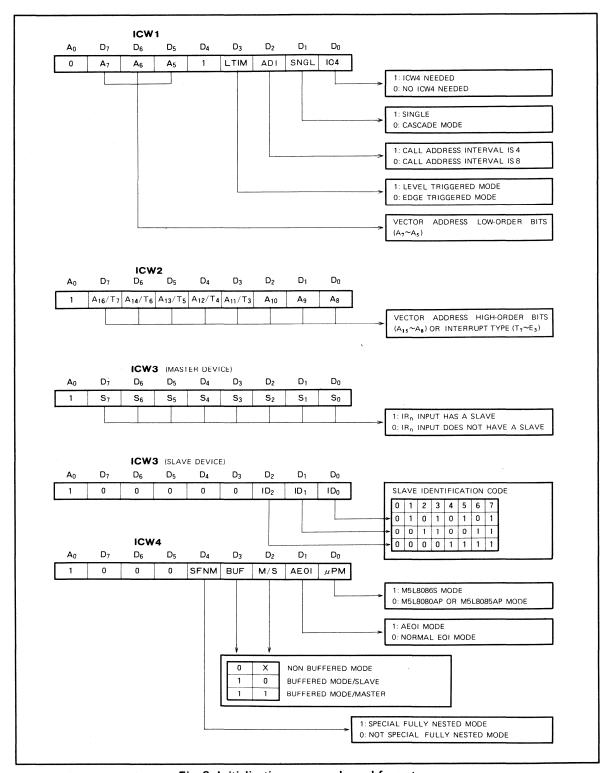


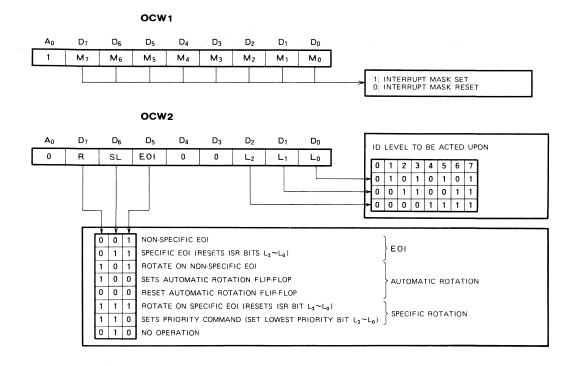
Fig. 3 Initialization command word format

Operation Command Words (OCWs)

The operation command words are used to change the contents of IMR, the priority of interrupt request inputs and the special mask. After the ICW are programmed into the M5L8259AP, the device is ready to accept interrupt requests. There are three types of OCWs; explanation of each follows, and the format of OCWs is shown in Fig. 4.

OCW1

The meaning of the bits of OCW1 are explained in Fig. 4


along with their functions. Each bit of IMR can be independently changed (set or reset) by OCW1.

OCW₂

The OCW2 is used for issuing EOI commands to the M5L-8259AP and for changing the priority of the interrupt request inputs.

OCW3

The OCW3 is used for specifying special mask mode, poll mode and status register read.

осмз

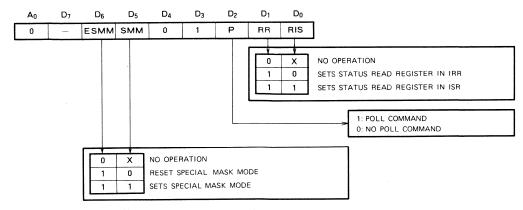


Fig. 4 Operation command word format

FUNCTION OF COMMAND

Interrupt masks

The mask register contains a mask for each individual interrupt request. These interrupt masks can be changed by programming using OCW1.

Special mask mode

When an interrupt request is acknowledged and the ISR bit corresponding to the interrupt request is not reset by EOI command (which means an interrupt service routine is executing) lower priority interrupt requests are ignored.

In special mask mode interrupt requests received at interrupt request inputs which are masked by OCW1 are disabled, but interrupts at all levels that are not masked are possible. This means that in the mask mode all level of interrupts are possible or individual inputs can be selectively programmed so all interrupts at the selected inputs are disabled. The masks are stored in IMR and special mask is set/reset by executing OCW3.

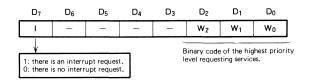
Buffered mode

The buffered mode will structure the M5L8259AP to send an enable signal on $\overline{SP/EN}$ to enable the data bus buffer, when the data bus requires the data bus buffer or when cascading mode is used. In this mode, when data bus output of the M5L8259AP is enabled, the $\overline{SP/EN}$ output becomes active. This allows the M5L8259AP to be programmed whether it is a master or a slave by software. The buffered mode is set/reset by executing ICW4.

Fully nested mode

The fully nested mode is the mode when no mode is specified and is the usual operational mode. In this mode, the priority of interrupt request terminals is fixed from the lowest IR₇ to the highest IR₀. When an interrupt request is acknowledged the CALL instruction and vectored address are released onto the data bus. At the same time the ISR bit corresponding to the accepted interrupt request is set. This ISR bit remains set until it is reset by the input of an EOI command or until the trailing edge of last INTA pulse in AEOI mode. While an interrupt service routine is being executed, interrupt requests of same or lower priority are disabled while the bit of ISR remains set. The priorities can be changed by OCW2.

Special fully nested mode


The special fully nested mode will be used when cascading is used and this mode will be programmed to the master by ICW4. The special fully nested mode is the same as the fully nested mode with the following two exceptions.

 When an interrupt from a certain slave is being serviced, this slave is not locked out from the master priority logic. Higher priority interrupts within the slave will be recognized by the master and the master will initiate an interrupt request to the CPU. In general in the

- normal fully nested mode, a serviced slave is locked out from the master's priority, and so higher priority interrupts from the same slave are not serviced.
- 2. When an interrupt from a certain slave is being serviced the software must check ISR to determine if there are additional interrupts requests to be serviced. If the ISR bit is 0 the EOI command may be sent to the master too. But if it is not 0 the EOI command should not be sent to the master.

Poll command

The poll mode is useful when the internal enable flip-flop of the microprocessor is reset, and interrupt input is disabled. Service to the device is achieved by a programmer initiative using a poll command. In the poll mode the M5L-8259AP at the next $\overline{\text{RD}}$ pulse puts 8 bits on the data bus which indicates whether there is an interrupt request and reads the priority level. The format of the information on the data bus is as shown below.

When I=0 (no interrupt request), $W_2 \sim W_0$ is 111. The poll is valid from \overline{WR} to \overline{RD} and interrupt is frozen. This mode can be used for processing common service routines for interrupts from more than one line and does not require any \overline{INTA} sequence. Poll command is issued by setting P=1 in OCW3

End of interrupt (EOI) and specific EOI (SEOI)

An EOI command is required by the M5L8259AP to reset the ISR bit. So an EOI command must be issued to the M5L8259AP before returning from an interrupt service routine.

When AEOI is selected in ICW4, the ISR bit can be reset at the trailing edge of the last INTA pulse. When AEOI is not selected the ISR bit is reset by the EOI command issued to the M5L8259AP before returning from an interrupt service routine. When programmed in the cascade mode the EOI command must be issued to the master once and to corresponding slave once.

There are two forms of EOI command, specific EOI and non-specific EOI. When the M5L8259AP is used in the fully nested mode, the ISR bit being serviced is reset by the EOI command. When the non-specific EOI is issued the M5L-8259AP will automatically reset the highest ISR bit of those that are set. Other ISR bits are reset by a specific EOI and the bit to be reset is specified in the EOI by the program. The SEOI is useful in modes other than free nested

mode. When the M5L8259AP is in special mask mode ISR bits masked in IMR are not reset by EOI. EOI and SEOI are selected when OCW2 is executed.

Automatic EOI (AEOI)

In the AEOI mode the M5L8259AP executes non-specific EOI command automatically at the trailing edge of the last INTA pulse. The AEOI mode is not required within a single M5L8259AP, but it is useful when a nested multilevel interrupt structure is expected. When AEOI=1 in ICW4, the M5L8259AP is put in AEOI mode continuously until reprogrammed in ICW4.

Automatic rotation

The automatic rotation mode is used in applications where many interrupt requests of the same level are expected such as multichannel communication systems. In this mode when an interrupt request is serviced, that request is assigned the lowest priority so that if there are other interrupt requests they will have higher priorities. This means that the next request on the interrupt request being serviced must wait until the other interrupt requests are serviced (worst case is waiting for all 7 of the other controllers to be serviced). The priority and serving status are rotated as shown in Fig. 5.

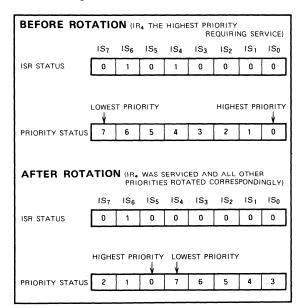


Fig. 5 An example of priority rotation

Automatic rotation mode is selected when R=1, EOI=1, SL=0 in OCW2. The internal priority status is changed by EOI or AEOI commands. The rotation priority A flip-flop is set by R=1, EOI=0 and SL=0 which is useful when the M5L8259AP is used in the AEOI mode.

Specific rotation

Specific rotation gives the user versatile capabilities in interrupt controlled operations. It serves in those applications in which a specific device's interrupt priority must be altered. As opposed to automatic rotation which automatically sets priorities, specific rotation is completely user controlled. That is, the user selects the interrupt level that is to receive lowest or highest priority. Priority changes can be executed during an EOI command.

PROGRAMMABLE INTERRUPT CONTROLLER

Level triggered mode/Edge triggered mode

Selection of level or edge triggered mode of the M5L-8259AP is made by ICW1. When using edge triggered mode not only is a transition from low to high required, but the high-level must be held until the first $\overline{\text{INTA}}$. If the high-level is not held until the first $\overline{\text{INTA}}$, the interrupt request will be treated as if it were input on IR₇, except that the ISR bit is not set. When level triggered mode is used the functions are the same as edge triggered mode except that the transition from low to high is not required to trigger the interrupt request.

In the level triggered mode and using AEOI mode together, if the high-level is held too long the interrupt will occur immediately. To avoid this situation interrupts should be kept disabled until the end of the service routine or until the IR input returns low. In the edge triggered mode this type of mistake is not possible because the interrupt request is edge triggered.

Reading the M5L8259AP internal status

The contents of IRR and ISR can be read by the CPU with status read. When an OCW3 is issued to the M5L8259AP and an \overline{RD} pulse issued the contents of IRR or ISR can be released onto the data bus. A special command is not required to read the contents of IMR. The contents of IMR can be released onto the data bus by issuing an \overline{RD} pulse when $A_0=1$. There is no need to issue a read register command every time the IRR or ISR is to be read. Once a read register command is received by the M5L8259AP, it remains valid until it is changed. Remember that the programmer must issue a poll command every time to check whether there is an interrupt request and read the priority level. Polling overrides status read when P=1, RR=1 in OCW3.

Cascading

The M5L8259AP can be interconnected in a system of one master with up to eight slaves to handle up to 64 priority levels. A system of three units that can be used with the M5L8080AP or M5L8085AP is shown in Fig. 6.

The master can select a slave by outputting its identification code through the three cascade lines. The INT output of each slave is connected to the master interrupt request inputs. When an interrupt request of one of the slaves is to be serviced the master outputs the identification

code of the slave through the cascade lines, so the slave will release the vectored address on the next INTA pulse.

The cascade lines of the master are nomally low, and will contain the slave identification code from the trailing edge of the first INTA pulse to the leading edge of the last INTA pulse. The master and slave can be programmed to work in different modes. ICWs, and EOI commands must be issued twice: once for the master and once for the corresponding slave. Each CS of the M5L8259AP requires an address decoder.

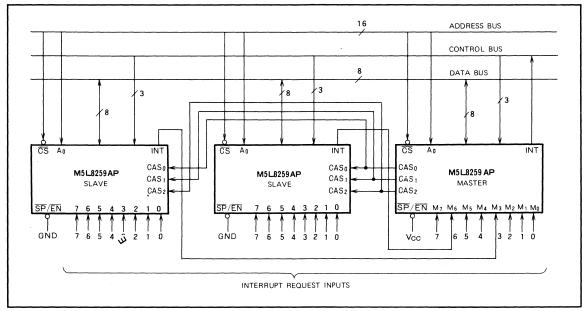


Fig. 6 Cascading the M5L8259AP

INSTRUCTION SET

Item	Managia				Instr	uction o	ode					Fund	ction	
nber	Mnemonic	A ₀	D ₇	D ₆	D ₅	Dá	D ₃	D ₂	D ₁	D ₀	ICW4 required?	Interval	Single	Trigger
1	ICW1 A	0	A7	A ₆	A ₅	1	0	1	1	0	N	4	Y	E
2	ICW1 B	0	A7	A ₆	A ₅	. 1	1	1	1	0	N ·	4	Y	L
3	ICW1 C	0	A ₇	A ₆	A ₅	1	0	1	0	0	N	4	N	E
4	ICW1 D	0	A ₇	A ₆	A ₅	-1	1	1	0	0	N	4	N	L
5	ICW1 E	0	A7	A ₆	0	. 1	0	0	1	0	N	8	Y	E
6	ICW1 F	0	A7	A ₆	0	1	1	0	1	0	N	8	Y	L
7	ICW1 G	0	A7	A ₆	0	1	0	0	0	0	N	8	N	E
8 9	ICW1 H	0	A7	As	0	1	1	0	0	0	N N	8	N	L
10	ICW1 I ICW1 J	0	A7	A ₆	A ₅	1	0	1	1	1	Y	4	Y	E L
11	ICW1 5	0	A7 A7	A6	A5	1	1	1 1	0	1	Y	4		E
12	ICW1 K	0	A ₇	A ₆	A ₅	1	1	1	ö	i	, ,	4	2 2	L
13	ICW1 M	o	A ₇	A ₆	Õ	1	ò	ò	1	i	Ý	8	Y	Ē
14	ICW1 N	0	A ₇	A ₆	ō	1	1	ō.	1	1.	Y	8	Ÿ	į .
15	ICW1 O	0	A7	A ₆	ō	1	0	o	o	1	Y	8	N	Ē
16	ICW1 P	0	A ₇	A ₆	0	1	- 1	0	0	1	Y	8	N.	L
17	ICW2	1	A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	Ag	A ₈		8-bit vectored addr	ess	
18	ICW3 M	1	S ₇	S ₆	S ₅	S ₄	S ₃	S2	S ₁	So		Slave connections (
19	ICW3 S	1	0	0	0	0	0	ID ₂	ID ₁	IDo		Slave identification	code (slave mode)	
						*****					SFNM	BUF	AEOI	8086
20	ICW4 A	1	0	0	0	0	0	0	0	0	N	N	N	N
21	ICW4 B	1	ŏ	ō	ō	ō	ō	ō	ŏ	1	N	N	N	Y
22	ICW4 C	1	0	0	0	0	0	0	1	Ó	N	N	Υ	N
23	ICW4 D	1	0	0	0	0	0	0	1	1	N	N	Y	Y
24	ICW4 E	1	0	0	0	0	0	1	0	0	N	N	N	N
25	ICW4 F	1	0	0	0	0	0	1	0	1	N	N	N	Y
26	ICW4 G	1	0	0	0	0	ũ	1	1	0	N	N	Y	N
27	ICW4 H	1	0	0	0	0	Ç	1	1	1	N	N	Y	Y
28	ICW4 I	1	0	0	0	0	1	0	0	0	N	YS	N.	N
29	ICW4 J	1	0	0	0	0	1	0	0	1	N	YS	. N	Y
30	ICW4 K	1	0	0	0	0	1	0	1	0	N	Y S Y S	Y	N
32	ICW4 M	1	ö	ö	ö	ö	1	1	0	0	N N	Y S Y M	Y N	N
33	ICW4 N	i	Ö	ŏ	ŏ	ŏ	i	·i	Ö	1	N	YM	N	Y
34	ICW4 O	1	ŏ	ō	ŏ	ŏ	1	1	1	ò	N	YM	Ϋ́	N
35	ICW4 P	1	ŏ	ŏ	ō	ō	1	1	1	1	N	Y M	Ý	Ÿ
36	ICW4 NA	1	ō	0	o	1	0	0	Ó	Ó	Y	N	N	N
37	ICW4 NB	1	o	0	0	1	0	0	0	1	Y	N	N	Y
38	ICW4 NC	1	0	0	0	1	0	0	1	0	Y	N	Y .	N
39	ICW4 ND	1	0	0	0	1	0	0	1	1	Y	N	Y.	Y
40	ICW4 NE	1	0	0	. 0	1 .	0	1	0	0	Y	N	N	N
41	ICW4 NF	1	0	0	0	1	0	1	0	1	Υ	N	N	Y
42	ICW4 NG	1	0	0	0	1	0	1	1	0	Y	N	Υ	N
43	ICW4 NH	1	0	0	0	1	0	1	1	1	Y	N	Y	Y
44	ICW4 NI	1	0	0	0	1	1 .	0	0	0	Y	YS	, N	N
45	ICW4 NJ ICW4 NK	1	0	0	0	1	1	0	0	1 0	Y	Y S Y S	N Y	Y
46 47	ICW4 NK	1	0	- 0	0	1	1	0	1	1	Y	YS	Y	N
48	ICW4 NM	1	Ö	ö	Ö	i	i	1	ò	ò	Ϋ́Υ	YM	N	N
49	ICW4 NN	1	Ö	ŏ	ŏ	i	1	i	ŏ	1	Ý	YM	N	Y
50	ICW4 NO	i	Ö	ŏ	ŏ	i	1	i	1	Ö	Ý	YM	Ý	. 2
51	ICW4 NP	1	ŏ	ō	ō	1	1	1	1	1	Y	YM	Ý	Y
52	OCW1	1	M ₇	M ₆	M ₅	M ₄	Мз	M ₂	M 1	Mo	Interrupt r	nask		
53	OCW2 E	o	0	0	1	0	0	0	0	0	EOI			
54	OCW2 SE	0	0	1	1	0	0	L ₂	L ₁	Lo	SEOI			
55	OCW2 RE	0	. 1	0	1	0	0	0	0	o	Rotate on	Non-Specific EOI co	ommand (Automatic	rotation)
56	OCW2 RSE	0	1	1	1	0	0	L_2	L ₁	Lo		Specific EŌI ∞mma	and (Specific rotatio	n)
57	OCW2 R	0	1	0	0	0	0	0	0	0		AEOI Mode (SET)		
58	OCW2 CR	0	0	0	0	0	0	.0	0	0		AEOI Mode (CLEAR	1)	
59	OCW2 RS	0	1	1	0	0	0	L ₂	L ₁	Lo	Set priority	y without EÖI		
60	OCW3 P	0	0	0	0	0	1	1	0	0				
61	OCW3 RIS	0	0	0	0	0	1	0	1	1				
62	OCW3 RR	0	0	0	0	0	1	0	1 0	0				
UJ	OCW3 SM		9	•	•	J	•	9	J	0	l			

Note: Y: yes, N: no, E: edge, L: level, M: master, S: slave

MITSUBISHI LSIS M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		-0.5~7	V
VI	Input voltage		-0.5-7	٧
Vo	Output voltage		-0.5~7	V
Pd	Power dissipation		1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		−65∼150	°C

RECOMMENDED OPERATING CONDITIONS (Ta=0~70°C, unless otherwise noted)

Symbol	Parameter		Limits		U-1-
Symbol	Parameter	Min	Nom	Max	Unit
Vcc	Supply voltage	4.5	5	5.5	٧
Vss	Supply voltage		0		V
ViH	High-level input voltage	2		V _{CC} +0.5	٧
VIL	Low-level input voltage	-0.5		0.8	V

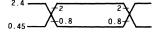
$\textbf{ELECTRICAL CHARACTERISTICS} \text{ (Ta} = 0 \sim 70^{\circ}\text{C} \text{, V}_{CC}, \text{ 5V} \pm 10\%, \text{ V}_{SS} = 0\text{V}, \text{ unless otherwise noted.)}$

Symbol	Parameter	Test conditions		Limits		Unit
Symbol	r ar ameter	rest conditions	Min	Тур	Max	Ont
Voн	High-level output voltage	I _{OH} = -400μA	2.4			V
Voh (INT)	High-level output voltage, interrupt request output	$I_{OH} = -100 \mu A$	3.5			V
VoL	Low-level output voltage	I _{OL} =2.2mA			0.45	V
Icc	Supply current from V _{CC}				85	mA
Iн	High-level input current	V _I =V _{CC}	- 10		10	μΑ
l _{IL}	Low-level input current	V _I =0V	- 10		10	μА
loz	Off-state output current	V _{SS} =0, V _I =0.45~5.5V	— 10		10	μА
I _{IH(IR)}	High-level input current, interrupt request inputs	V _I =V _{CC}			10	μΑ
I _{IL(IR)}	Low-level input current, interrupt request inputs	V _I = 0 V	- 300			μА
Ci	Output capacitance	$V_{CC}=V_{SS}$, $f=1MHz$, $25mVrms$, $Ta=25°C$			10	pF
Ci/O	Input/output capacitance	$V_{CC}=V_{SS}$, $f=1MHz$, $25mVrms$, $Ta=25^{\circ}C$			20	pF

TIMING REQUIREMENTS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, unless otherwise noted)

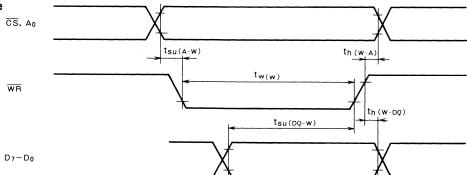
Symbol	Parameter	Alternative	7	Limits		11. 15
Symbol	Farantetel	symbol	Min	Тур	Max	Unit
tw(w)	Write pulse width	twLwH	290			ns
t _{su (A-W)}	Address setup time before write	t AHWL	0			ns
th(W-A)	Address hold time after write	t _{WHAX}	0			ns
t _{su(DQ-W)}	Data setup time before write	t _{DVWH}	240			ns
t _{h (W-DQ)}	Data hold time after write	twhox	0			ns
tw(R)	Read pulse width	t _{RLRH}	235			ns
t _{su (A-R)}	Address setup time before read	tAHRL	0			ns
th (R-A)	Address hold time after read	tRHAX	0			ns
tw(IR)	Interrupt request input width, low-level time, edge triggered mode	t _{JLJH}	100			ns
tsu (CAS-INTA)	Cascade setup time after INTA (slave)	t CVIAL	55			ns
t _{rec(w)}	Write recovery time	t what	190			ns
trec(R)	Read recovery time	t _{RHRL}	160			ns

_

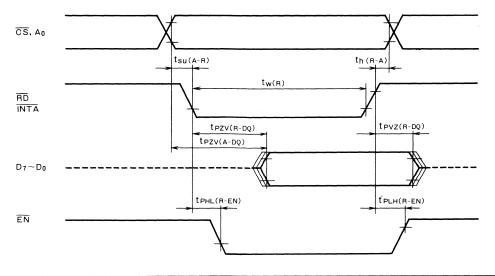

$\textbf{SWITCHING} \ \ \textbf{CHARACTERISTICS} \ (\ \textbf{Ta} = \textbf{0} \sim 70^{\circ} \textbf{C} \ , \ \ \textbf{V}_{CO} = \textbf{5V} \pm 10\%, \ \ \textbf{V}_{SS} = \textbf{0V}, \ \ \text{unless otherwise noted} \)$

Symbol		Alternative	Limits			Unit
	Parameter	symbol	Min	Тур	Max	Onit
t _{PZV(R-DQ)}	Data output enable time after read	t _{RLDV}			200	ns
t _{PV} Z(R-DQ)	Data output disable time after read	t _{RHDZ}			100	ns
tpzv(A-DQ)	Data output enable time after address	t _{AHDV}			200	ns
tphL(R-EN)	Propagation time from read to enable signal output	t _{RLEL}			125	ns
t _{PLH(R-EN)}	Propagation time from read to disable signal output	t _{RHEH}			150	ns
t _{PLH(IR-INT)}	Propagation time from interrupt request input to interrupt request output	t _{JHIH}			350	ns
t PLV (INTA-CAS)	Propagation time from INTA to cascade output (master)	t _{IALCV}			565	ns
tpzv(cas-DQ)	Data output enable time after cascade output (slave)	tovov			300	ns

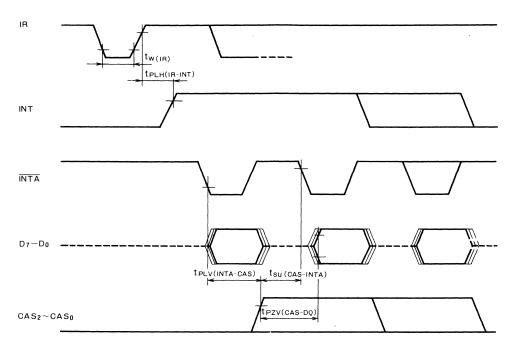
Note 1: INTA signal is considered read signal

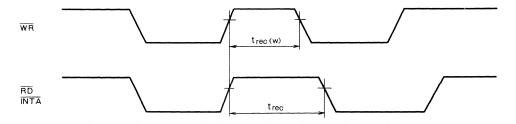

CS signal is considered address signal Input pulse level 0.45~2.4V Input pulse rise time 20ns Input pulse fall time 20ns

 $\label{eq:continuity} \begin{array}{ccc} Reference \ level \ input & V_{IH}=2V, \ V_{IL}=0.8V \\ & \text{output} & V_{OH}=2V, \ V_{OL}=0.8V \\ Load \ capacitance & C_L=100pF, \ where \ \overline{SP/EN} \\ & \text{pin is 15pF} \end{array}$



TIMING DIAGRAM


Read Mode


MITSUBISHI LSIS M5L8259AP

PROGRAMMABLE INTERRUPT CONTROLLER

Interrupt Sequence

Other Timing

- Note 1: M5L8086S mode
 - 2: M5L8080AP/M5L8085AP mode
 - 3: M5L8086S mode is in high-impedance state, pointer is released during the next INTA.

 When in single M5L8080AP/M5L8085AP mode, data is released by all INTAs. When master, CALL instruction is released during the first INTA, high impedance state during the second and third INTA. When slave, high impedance state during the first INTA, vectored address is released during the second and third INTA.

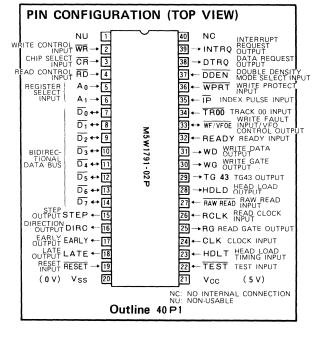
M5W1/91-02P

FLOPPY DISK FORMATTER/CONTROLLER

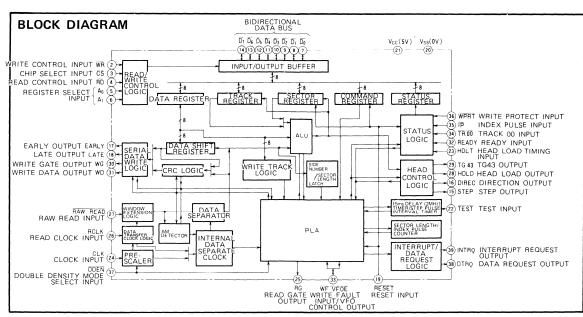
DESCRIPTION

The M5W1791-02P is a floppy disk formatter/controller device which accommodates single and double density formats. The device is designed for use with microprocessors or microcomputers. The device is fabricated with the N-channel silicon gate ED-MOS technology and is packaged in a 40-pin DIL package.

FEATURES


- Single 5V power supply
- Accommodate single and double density formats IBM 3740 single density format
 IBM system 34 double density format
- Selectable sector length (128,256,512 or 1024 bytes/ sector)
- Side select compare
- Single/multiple sector read or write with automatic sector search
- · Selectable track to track stepping time
- Write precompensation
- DMA or programmed data transfers
- Window extension
- Interchangeable with Western Digital's FD1791-02 in function except for V_{DD} power supply and pin configuration

APPLICATIONS


- Single or double density floppy disk drive formatter/ controller
- 8-inch or mini floppy disk interface

FUNCTION

The M5W1791-02P is a floppy disk formatter/controller that can be used with most microprocessor or microcom-

puter systems. The hardware of the M5W1791-02P consists of a floppy disk interface, a CPU interface and a PLA control logic. The total chip can be programmed by eleven 8-bit commands. The floppy disk interface portion performs the communication with the floppy disk drive under control of the PLA control logic. The CPU interface portion has five registers — command, dara, status, track and sector register — and communicates with the CPU through the data bus. These functions are also controlled by the PLA.

FLOPPY DISK FORMATTER/CONTROLLER

PIN DESCRIPTION

Pin	Name	Input or output	Functions			
NU	Non-usable terminal		NU (pin 1) is internally connected to the back gate bias generater, so it must remain open.			
NC	No internal connection		NC (pin 40) is not internally connected.			
RESET	Reset input	Input	Reset input (Active low). The device is reset by this signal and automatically loads 0316 into the command register. The not-ready-status bit is also reset by this signal. When reset input is made to be high, the device executes restore command unless READY is active and the device loads 0116 to the sector register.			
WR	Write control input	Input	Write signal from a master CPU (Active low).			
cs	Chip select input	Input	Chip select (Active low).			
RD	Read control input	Input	Read signal from a master CPU (Active low).			
			Register select inputs. These inputs select the register under the control of the \overline{RD} and \overline{WR} .			
			A ₁ A ₀ RD WR			
A ₀ , A ₁	Register select input	Input	0 0 STATUS REGISTER COMMAND REGISTER 0 1 TRACK REGISTER TRACK REGISTER 1 0 SECTOR REGISTER SECTOR REGISTER 1 1 DATA REGISTER DATA REGISTER			
D ₀ ~ D ₇	Bidirectional data bus	In/Out	Three-state, inverted bidirectional data bus.			
CLK	Clock input	Input	Clock input to generate internal timing, 2MHz for 8-inch drives, 1MHz for mini drives.			
DTRQ	Data request output	Output	DTRQ is an open drain output, so pull up to V_{CC} by the 10k resistor. In the disk read mode, DTRQ indicates that data is assembled in the data register. In the disk write mode, it indicates that the data register is empty. DTRQ is reset by the read data or write data operation.			
INTRQ	Interrupt request output	Output	INTRQ is also a open drain output, so pull up to V_{CC} by the 10k resistor. INTRQ becomes active at the completion of any command and is reset when the CPU reads the status or writes the command.			
STEP	Step output	Output	Step pulse output (Active high).			
DIRC	Direction output	Output	Direction output. High level means the head is stepping in and low level means the head is stepping out.			
EARLY	Early output	Output	This signal is used for write precompensation. It indicates that the write data pulse should be shifted early.			
LATE	Late output	Output	This signal is also used for write precompensation. It indicates that the write data pulse should be shifted late.			
TEST	Test input	Input	This input is only used for test purposes, so user must tie it to V _{CC} or leave it open unless using voice coil actuated motors.			
HDLT	Head load timing input	Input	When the device finds high level on this input, the device assumes that the head is engaged on the media. Active high.			
RG	Read gate output	Output	This signal shows the external data separator that the synchfield is detected.			

MITSUBISHI LSIS M5W1791-02P

FLOPPY DISK FORMATTER/CONTROLLER

Pin	Name	Input or output	Functions
RCLK	Read clock input	Input	This signal is internally used for the data window. Phasing relation to raw read data is specified but polarity (RCLK high or low) is not important.
RAW READ	Raw read input	Input	This input signal from the drive shall be low for each recorded flux transition.
HDLD	Head load output	Output	This output signal controls the loading of the head of the drive. The head must be loaded on the media by this high-level output.
TG43	TG 43 output	Output	This output is valid only during disk read/write operation and it shows the position of the head. High level on this output indicates that the head is positioned between track 44 to 76.
WG	Write gate output	Output	This signal becomes active before disk write operations are to occur.
WD	Write data output	Output	This signal consists of data bits and clock bits. It becomes active for every flux transition. Active high.
READY	Ready input	Input	This signal shows the device the drive is ready. In the disk read/write operation except for TYPE 1 command operation, low-level input terminates current operation and the device generates the INTRQ. In the TYPE 1 command operation, this signal is neglected. Not ready bit in the status register is the inverted form of this input.
WF/VF0E	Write fault input/ VFO enable output	In/Out	This is a bidirectional signal. It becomes write fault input when WG is active. In the disk write operation, low level signal on this input terminates the write operation and makes INTRO active. This signal also appears in the status register as the write fault bit. When WG is inactive, this signal works as VFO enable output. VFOE output is also an open drain type, so pull it up to V _{CC} and never input active write fault signal while WG is inactive.
TR00	Track 00 input	Input	This signal indicates that the head is located on the track 00 to the device, Active low.
ĪP	Index pulse input	Input	This input indicates to the device that an index hole of the diskette has been encountered.
WPRT	Write protect input	Input	Low level signal on this input informs the device that the drive is in the write protected state. Before disk write operations, this signal is sampled and an active low signal will terminate the current command and set INTRQ. The write protect status bit in the status register is also set.
DDEN	Double density mode select input	Input	This input determines the device operation mode. When DDEN=0, double density mode is selected. When DDEN=1, single density mode is selected.

FLOPPY DISK FORMATTER/CONTROLLER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter Conditions		Limits	Unit
Voc	Supply voltage		-0.5~7	V
VI	Input voltage	With respect to V _{SS}	-0.5~7	V
V ₀	Output voltage		-0.5~7	V
Pd	Power dissipation	Ta = 25°C	1000	mW
Topr	Operating free-air temperature range		0~70	°C
Tstg	Storage temperature range		−65∼150	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = 0 \sim 70^{\circ}C$, unless otherwise noted)

Symbol	D		Unit		
	Paramter		Nom	Max	Omit
Vcc	Supply voltage	4.75	5	5.25	٧
Vss	Supply voltage		0		V
ViH	High-level input voltage	2			٧
VIL	Low-level input voltage	V _{SS} -0.5		0.8	٧

ELECTRICAL CHARACTERISTICS ($Ta = 0 \sim 70^{\circ}C$, $V_{CC} = 5V \pm 5\%$, unless otherwise noted)

Symbol		Test condition		Limits		
	Parameter	rest condition	Min	Туре	Max	Unit
VoH	High-level output voltage	$I_{OH} = -100\mu A$	2.4			V
VoL	Low-level output voltage	I _{OL} =1.6mA	-		0.45	٧
loc	Supply current				100	mA
I ₁	Input current, HLT, TEST, WF, WPRT and DDEN	V _I =V _{CC} ~ 0 V	-100		100	μА
	Input current, other inputs	V ₁ = V _{CC} ~ 0 V	- 10		10	μA
loz	Off-state output current	V _I =V _{CC} ~ 0V	- 10		10	μА

FLOPPY DISK FORMATTER/CONTROLLER

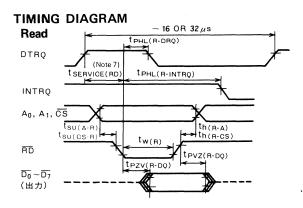
$\textbf{TIMING REQUIREMENTS} \ \, (\texttt{Ta} = 0 \sim 70 ^{\circ} \texttt{C} \, , \ \, V_{\texttt{CC}} = 5 \texttt{V} \pm 5 \%, \ \, V_{\texttt{SS}} = 0 \texttt{V} \, , \ \, \text{unless otherwise noted} \,)$

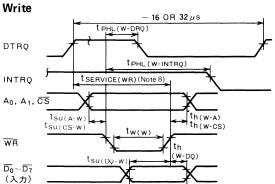
Symbol	Parameter	Alternative	T		Unit		
Symbol	Parameter	symbol	Test conditions	Min	Тур	Max	Unit
tsu (A-R) tsu (CS-R)	Address setup time before read and chip select	TSET		50			ns
th (R-A) th (R-CS)	Address hold time after read and chip select	THLD		10			ns
tw (R)	Read pulse width	TRE	C _L =50pf	400			ns
tsu (A-W) tsu (CS-W)	Address setup time before write and chip select	TSET		50			ns
th (W-A) th (W-CS)	Address hold time after write and chip select	THLD		10			ns
tw (w)	Write pulse width	TWE		350			ns
tsu (DQ-W)	Data setup time before write	TDS '		250			ns
th (w-DQ)	Data hold time after write	TDH		70			ns
tw(RR)	Raw read pulse width	Tpw	(Note 1, 2)	100	200		ns
tc (RR)	Raw read cycle time	tbc	(Note 3)		1500	1800	ns
tw(ROLK)	Read clock high-level width	Та	(Note 4, 5)	800			ns
tw (RCLK)	Read clock low-level width	Ть	(Note 4, 5)	800			ns
tc (RCLK)	Read clock cycle time	Tc			1500	1800	ns
th (RCLK-RR)	Read clock hold time before raw read	T _{X1}		40			ns
th (RR-RCLK)	Read clock hold time after raw read	T _{X2}	(Note 1)	40			ns
•		T	FM	450	500	550	ns
tw (WD)	Write data pulse width	Тwp	MFM	150	200	250	ns
t _{c (WD)}	Write data cycle time	Tbc			2,3,4		μs
tw (φ)	Clock high-level pulse width	TCD1		230	250	20000	ns
tw (ø)	Clock low-level pulse width	TCD ₂		200	250	20000	ns
tw (RESET)	Reset pulse width	TMR		50			μs
tw (IP)	Index pulse width	TIP	(Note 5)	10			μS
tw (WF)	Write fault pulse width	TWF	(Note 5)	10			μS

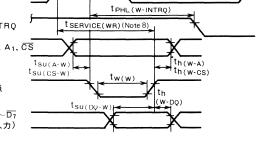
SWITCHING CHARACTERISTICS (Ta = 0 \sim 70°C , V_{CC} = 5V \pm 5%, V_{SS} = 0V , unless otherwise noted)

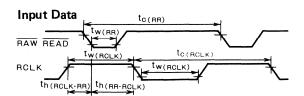
Symbol	Parameter	Alternative	Test conditions			Unit	
Symbol	r ai arrietei	symbol	rest conditions	Min	Тур	Max	Unit
•	Propagation time from write gate to write data	Twg	FM		2		μS
tpLH(WG-WD)		MFM		1		μS	
tPLH(E-WD) tpLH(L-WD)	Propagation time from early or late to write data	Ts	MFM	125			ns
tPHL(WD-E) tPHL(WD-L)	Propagation time from write data to early or late	Th MFM		125	and White I was a second of the second		ns
t DUIL (WD WO)	IL (WD-WG) Propagation time from write data to write gate Twf FM MFM	FM		2		μS	
TPHL (WD-WG)		I W	MFM		1		μs
t _{PZV (R-DQ)}	Output enable time after read	TDACC	C _L =50pf			350	ns
t _{PVZ (R-DQ)}	Output disable time after read	TDOH	C _L =50pf	50		150	ns
t _{PHL (R-DRQ)}	Propagation time from read to DRQ	TDRR (RD)			400	500	ns
t _{PHL} (R-INTRQ)	Propagation time from read to INTRQ	TIRR(RD)	(Note 5)		500	3000	ns
t _{PHL (W-DRQ)}	Propagation time from write to DRQ	TDRR(WR)			400	500	ns
t PHL (W-INTRQ)	Propagation time from write to INTRQ	TIRR (WR)	(Note 5)		500	3000	ns
tw (STP)	Step pulse width	TSTP	(Note 5)	2 or 4			μs
t _{PLH(DIR-STP)}	Propagation time from direction to step	TDIR	(Note 5)	12			μs

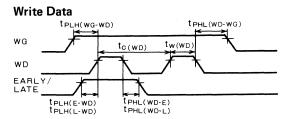
Note 1: The pulse of Raw READ may be any width if pulse is entirely within RCLK. When the pulse occurs in the RCLK window, RAW READ pulse width must be less than 300 ns for MFM mode and 600 ns for FM mode at CLK=2MHz. Times double for 1MHz.

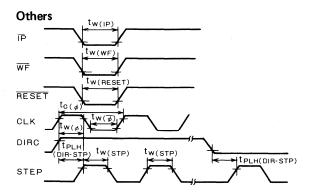

2 : 100 ns pulse width is recommended for the Raw $\overline{\text{READ}}$ pulse in 8 MFM mode.


3: RAW READ cycle time T_{C(RR)} and WD cycle time T_{C(WD)} is normally 2µs in MFM and 4µs in FM. Times double when CLK=1MHz.


4: The polarity of RCLK during Raw READ is not important.


5 : Times double when CLK=1MHz.


FLOPPY DISK FORMATTER/CONTROLLER



Note 7: t SERVICE (RD) maximum value; FM: 27.5µs, MFM: 13.5µs 8: t SERVICE (WR) maximum value; FM: 28µs, MFM: 14µs

GENERAL-PURPOSE MOS LSIs

30- OR 120-FUNCTION REMOTE-CONTROL TRANSMITTERS

DESCRIPTION

The M50110XP and M50115XP are remote-control transmitter circuits manufactured by aluminum-gate CMOS technology for use in television receivers, audio equipment and other devices using infrared for transmission. The M50110-XP conveys 30 different commands on the basis of a 10OSCILLATOR
INPUT,
OUTPUT
OUTPUT commands. These transmitters are intended to be used in conjunction with an M50111XP, M50116XP or M50117-XP receiver. The X in each type corresponds to blank, A, B or C, which are respectively used for audio equipment, TV and VTR, air conditioners and other applications, or video-disk equipment.

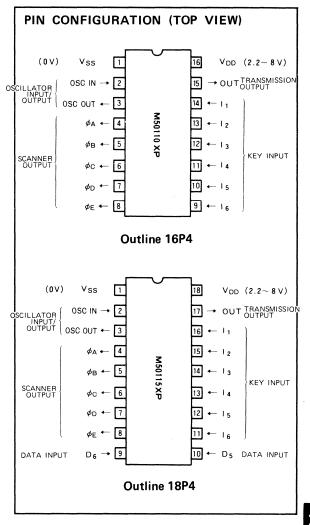
FEATURES

Туре	Remote-control function
M50110XP	30
M50115XP	120

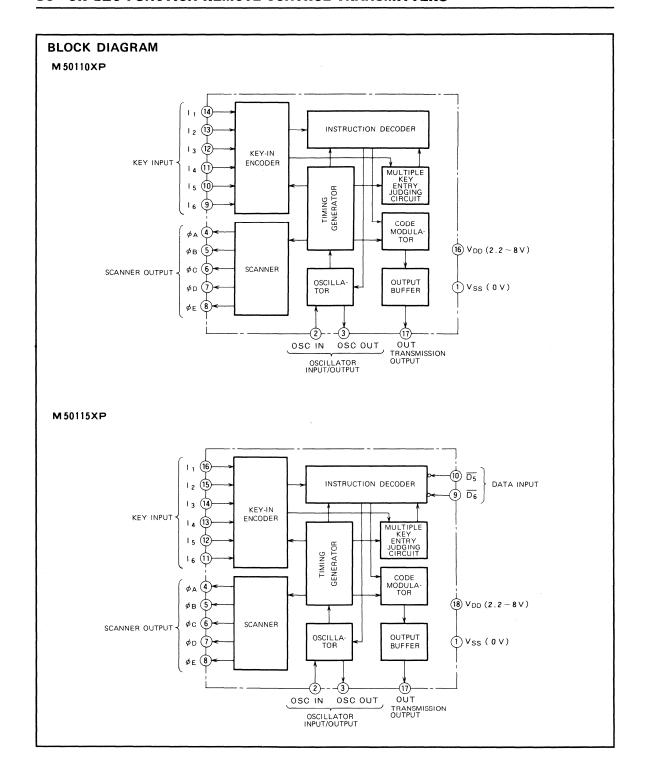
- Single power supply
- Wide supply voltage range: 2.2V~8V
- Low power dissipation:

Idle state (V_{DD}=3V): 3mW (typ)

3µW (max)


- Has many functions and various uses
- Low-cost LC or ceramic oscillator used for reference frequency
- Low external component count
- Low transmitter duty cycle for minimal power consump-
- High-speed transmission

APPLICATION


 Remote-control transmitter for audio equipment, TV, VTR and video-disk equipment

FUNCTION

The M50110XP and M50115XP transmitter circuits for infrared remote-control systems consist of an oscillator, a timing generator, a scanner, a key-in encoder, an instruction decoder, a code modulator and an output buffer. In M50110XP with a 6x5 keyboard matrix 30 commands can be transmitted by 10-bit PCM codes. In M50115XP, with a 6x5 keyboard matrix and two data inputs 120 commands can be transmitted. Oscillation is stopped when none of the keys are depressed in order to minimize power consumption.

30- OR 120-FUNCTION REMOTE-CONTROL TRANSMITTERS

30- OR 120-FUNCTION REMOTE-CONTROL TRANSMITTERS

FUNCTION

Oscillator

As the oscillator is on chip, oscillation frequency is easily obtained by connecting an external LC network or ceramic resonator between the OSC IN and OSC OUT terminals. Fig. 1 and Fig. 2 show examples of typical oscillation circuits.

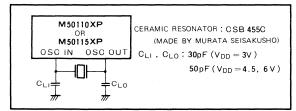


Fig. 1 An example of an oscillator (using a ceramic resonator)

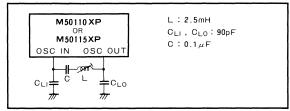


Fig. 2 An example of an oscillator (using an LC network)

Setting the oscillation frequency to 480kHz (or 455kHz) will also set the signal transmission carrier wave to 400kHz (or 38kHz).

Power consumption is minimized by stopping oscillation in the oscillator when none of the keys is depressed.

Key input and data input

In the M50110XP, 30 different commands can be sent through a 6x5 keyboard matrix, consisting of inputs $I_1 \sim I_6$ and scanner outputs $I_A \sim I_E$. In the M50115XP, 120 different commands can be sent because two data inputs, \overline{D}_5 and \overline{D}_6 , are also used.

Table 2 shows the relationship between the keyboard matrix and the transmission code.

1 Key code, type number and use

	Key code)	Type number	Use
K ₀	K ₁	K ₂	rype number	Use
0	0	0	M50110P M50115P	Remote control for audio equipment
1	0	0	M50110AP M50115AP	Remote control for TV and VTR
0	1	0	M50110BP M50115BP	Remote control for air conditioners and other application
0	0	1	M50110CP M50115CP	Remote control for video-disk equipment

Table 2 Relation between the keyboard matrix and the transmission code names

	. ΦΑ	φв	φc	φD	ΦE
16	A — 1	A – 2	A-3	A – 4	A — 5
15	A — 6	A — 7	A 8	A — 9	A — 10
14	A — 11	A — 12	A — 13	A — 14	A — 15
l3	B-0	B-1	B-2	B-3	B – 4
12	B – 5	B-6	B-7	B-8	B – 9
l ₁	B - 10	B-11	B – 12	B – 13	B — 14

Table 3 Relation between the transmission code names and the transmission codes

names a	na the	transn	11331011	coucs	
Transmission		Т	ransmission		
code name	D ₀	D ₁	D ₂	D ₃	D ₄
A'-1	1	0	0	0	0
A-2	0	1	0	0	0
A-3	1 .	1	0	0	0
A-4	0	0	1	0	0
A — 5	1	0	1	0	0
A — 6	0	1	1	0	0
A — 7	1	-1	1	0	0
A — 8	0	0	0	1	0
A — 9	1	0	0	1	0
A — 10	0	1	0	1	0
A — 11	1	1	0	1	0
A — 12	0	0	1	1	0
A — 13	1	0	1	1	0
A — 14	0	1	1	1	0
A — 15	1	1	1	1	0
B-0	0	0	0	0	1
B-1	1	0	0	0	1
B-2	0	1	0	0	1
B-3	1	1	0	0	1
B – 4	0	0	1	.0	1
B-5	1	0	1	0	1
B-6	0	. 1	1	0	1
B-7	1	1	1	0	1
B-8	0	0	0	1	1
B-9	1	0	0	1	1 .
B - 10	0	1	0	1.	1
B-11	1	1	0	1	1
B – 12	0	0	1	1	1
B-13	1	0	1	1	1
B-14	. 0	1	1	1	1

30- OR 120-FUNCTION REMOTE-CONTROL TRANSMITTERS

Transmission Commands

In the M50110XP, 30 commands can be transmitted by 10-bit PCM codes ($K_0 \sim K_2$, $D_0 \sim D_6$), and in the M50115XP, 120 commands can be transmitted. The first three bits $K_0 \sim K_2$, which are key codes between transmitters and receivers, correspond to type numbers and uses. Relation between key codes, type numbers and uses of remote control systems is shown in Table 1.

The next five bits $D_0 \sim D_4$ correspond to the 6x5 keyboard matrix. Relation between transmission codes and their name is shown in Table 2.

The last two bits, D_5 and D_6 , are controlled by the data inputs D_5 and D_6 . When terminal D_5 or D_6 is open or high level, data code D_5 or D_6 becomes "0", and when terminal D_5 or D_6 is low level, code data D_5 or D_6 becomes "1".

In the M50110XP, the data bits D_5 and D_6 are fixed in "0." To prevent spurious operation, the codes are designed so that there is no transmission code whose data bits $D_0 \sim D_6$ are all "0" or "1."

Transmission Coding

When oscillation frequency f_{osc} is 480kHz, transmission of data code is executed as follows: when f_{osc} is other than 480kHz, the period is multiplied by 480kHz/ f_{osc} and its frequency by f_{osc} /480kHz.

A single pulse is amplitude-modulated by a carrier of 40kHz, and the pulse width is 0.25ms. Therefore a single pulse consists of 10 clock pulses of 40kHz (see Fig. 3).

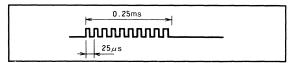


Fig. 3 A single pulse modulated onto carrier (40kHz)

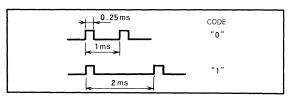


Fig. 4 Distinction between the bits "1" and "0"

The distinction between "0" and "1" bits is made by the pulse interval between two pulses, with an 1ms interval corresponding to "0", and a 2ms interval representing "1" (see Fig. 4).

One command word is composed of 10 bits, that is, of 11 pulses, and it is transmitted in the 24ms cycle while a matrix switch is depressed (see Fig. 5).

As mentioned above, adopting of this code means that the period during which output is high level (i.e. signal emitting LED is lit) is shorter than in continuous wave transmission. Indeed the LED is on for only half of the 11-pulse period or 1.375ms, which is 5.7% of the 24ms entire cycle. This not only saves in total power consumption, but it also improves LED reliability. That is to say, emission can be increased on the same power consumption.

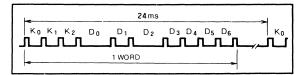


Fig. 5 Synthesis of one word (the code below shows 0001010000)

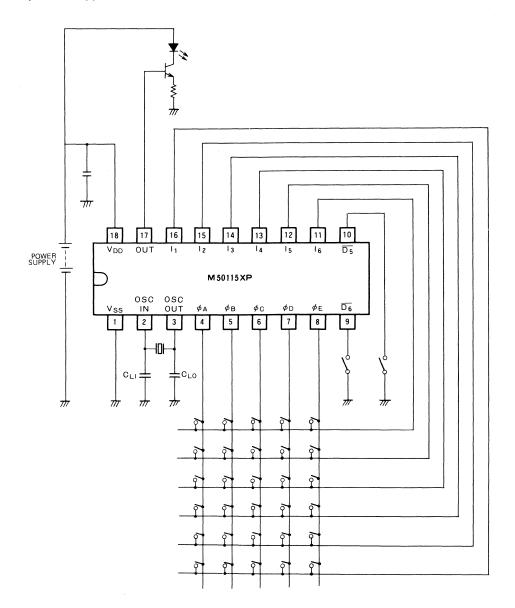
10

30- OR 120-FUNCTION REMOTE-CONTROL TRANSMITTERS

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{DD}	Supply voltage	With respect to GND	-0.3~9	V
VI	Input voltage		V _{SS} ≦V _I ≦V _{DD}	V
Vo	Output voltage		V _{SS} ≦ V ₀ ≦V _{DD}	V
Pd	Maximum power dissipation	Ta = 25°C	300	mW
Topr	Operating free-air temperature range		- 30 - 70	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -30 \sim 70^{\circ}C$, unless otherwise noted)


Symbol Parameter			Unit		
Symbol	Falameter	. Min	Nom	Max	OIII
V _{DD}	Supply voltage	2.2		8	V
V _{IH}	High-level input voltage	0.7×V _{DD}		V _{DD}	٧
VIL	Low-level input voltage	0		$0.3 \times V_{DD}$	V
4	One illestice from any		455		kHz
fosc	Oscillation frequency		480		kHz

ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
Symbol	rai ametei	163	c conditions	Min	Тур	Max	Unit
V _{DD}	Operational supply voltage	Ta = -30~70°C	, f _{OSC} =455kHz	2.2		8	٧
1	Supply voltage during operation	4 4551.43	V _{DD} = 3 V		0.1	0.5	mA
IDD	Supply voltage during operation	f _{OSC} = 455kHz	V _{DD} = 6 V		0.5	2	mA
1	Supply voltage during non-operation	V _{DD} = 3 V				1	μА
IDD	Supply voltage during non-operation	V _{DD} = 8 V				5	μА
R _I	Pull-up resistances, I ₁ -I ₆				20		kΩ
1	Low-level output currents, $\phi_{A} \sim \phi_{F}$	V _{DD} = 3 V, V _{OL} =0.9V		0.18	0.6		m A
IOL	Low-level output currents, $\phi_A \sim \phi_E$		V _{DD} = 6 V, V _{OL} =1.8V		3		m A
1	High-level output current, OUT	V _{DD} = 3 V, V _{OH} = 2 V		-2	-5		m A
Тон	Highlevel output current, OOT	V _{DD} = 6 V , V _{OH} = 4 V		-8	-16		m A

30- OR 120-FUNCTION REMOTE-CONTROL TRANSMITTERS

An example of an application circuit (M50115XP)

M50111XP, M50116XP, M50117XP

30~120-FUNCTION REMOTE-CONTROL RECEIVER

DESCRIPTION

The M50111XP, M50116XP and M50117XP are remote control receiver circuits manufactured by aluminum-gate CMOS technology for use in television receivers, audio equipment and other applications using infrared transmission. The systems can receive 30~120 different 10-bit PCM code commands by remote control.

The M50111XP, M50116XP and M50117XP are designed for use with an M50110XP or M50115XP transmitter. The X in each type number corresponds to blank, A, B or C, which are respectively used for audio equipment, TV and VTR, air conditioner and other applications, or videodisk equipment.

FEATURES

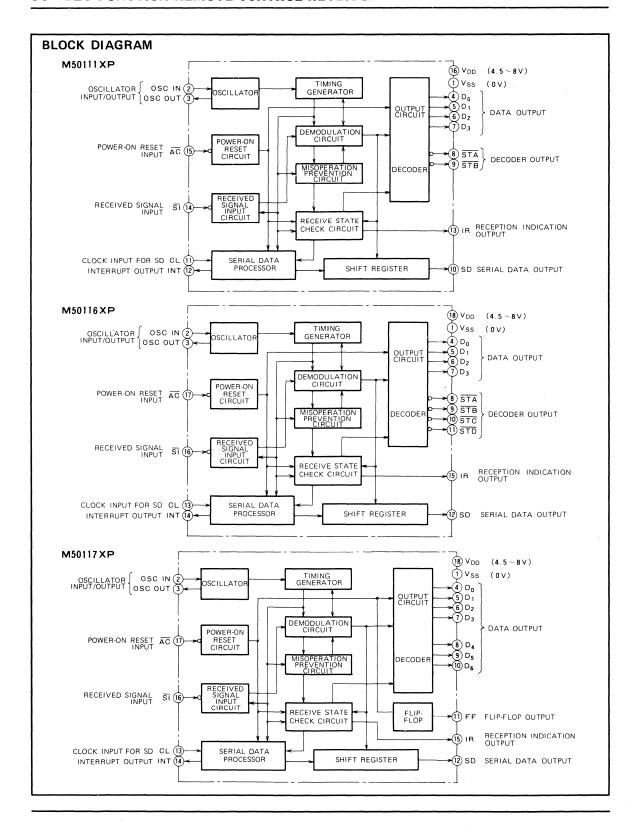
Туре	Remote-con	Parallel outputs	
Туре	Serial data	Parallel data	i dianei outputs
M50111XP	120	30	$D_0 \sim D_3, \overline{STA}, \overline{STB}$
M50116XP	120	60	D ₀ ~D ₃ ,STA~STD
M50117XP	120	120	D ₀ ~D ₇ , FF

- Single power supply
- Wide power supply voltage range: 4.5V~8V
- Low power dissipation
- Low-cost LC or ceramic oscillator used for frequency reference
- Information is transmitted by pulse code modulation
- High speed reception
- Superior noise immunity instructions are not executed unless the same code is received two or more times in succession
- Single transmission frequency (40kHz or 38kHz) for carrier wave
- Many functions and various uses
- Large tolerance in operating frequency between the transmitter and the receiver
- Can be simply connected to a microcomputer

APPLICATION

 Remote control receivers for audio equipment, TV, VTR, air conditioners, video-disk equipment and similar devices

FUNCTION


The M50111XP, M50116XP and M50117XP receivers for infrared remote control systems consist of an oscillator, a timing generator, a demodulator, an error prevention circuit, a reception state decision circuit, a serial data processor, a shift register, a received signal input circuit, power-on reset circuit and other circuits. The M50111XP, M50116XP and M50117XP are designed to decode and execute instructions after 2 successive receptions of the identical instruction code. This provides positive assurance that noise will not be executed as instructions.

With the data outputs $D_0 \sim D_6$ and the decode outputs $\overline{STA} \sim \overline{STD}$, M50111XP can process 30 different instructions, the M50116XP can process 60 different instructions and the M50117XP can process 120 different instructions. With a serial data output SD, 120 different instructions can be processed by any of the receivers.

M50111XP, M50116XP, M50117XP

30~120-FUNCTION REMOTE-CONTROL RECEIVER

30~120-FUNCTION REMOTE-CONTROL RECEIVER

M50111XP, M50116XP, M50117XP

FUNCTION

Oscillator

As the oscillator is on chip, oscillation frequency is easily obtained by connecting an external LC network or ceramic resonator between the OSC IN and OSC OUT terminals. Fig. 1 and Fig. 2 show examples of typical oscillation circuit.

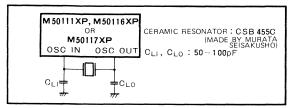


Fig. 1 An example of an oscillator (using a ceramic resonator)

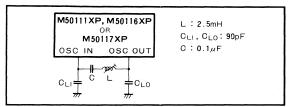


Fig. 2 An example of an oscillator (using an LC network)

When oscillation frequency f_{osc} is 480kHz, execution is as follows:

Received Signal Input Circuit and Demodulation Circuit

The received signal, sensed by the photo detector, is amplified and an integrated signal is supplied through \overline{SI} to be processed by the received signal input circuit, and then it is sent to the demodulation circuit. In the demodulation circuit, the pulse interval of the signal is analyzed and then converted to a digital code. Fig. 3 shows the relationship between the \overline{SI} input wave form, codes and data.

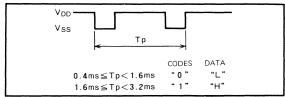


Fig. 3 The relationship between the SI input wave form, code and data

When the input pulse interval to the $\overline{\rm SI}$ input is 3.2 ms or longer, it will be assumed to be the end of a word, but if the interval is finally 50 ms or longer it will be accepted as the end of the command transmission and the device will be put in the idle state. In the idle state, the data outputs $D_0 \sim D_6$ and the reception indication output IR goes to low-level and the decoder outputs $\overline{\rm STA} \sim \overline{\rm STD}$ go to high-level.

Misoperation Prevention Circuit

Any signal whose low-level interval at \overline{SI} input is less than $50\sim100~\mu s$ is not accepted as a transmission signal.

When a pulse interval T_p is less than 0.4 ms, the misoperation prevention circuit resets to idle state to prevent an error. When all data codes $D_0 \sim D_4$ are supplied as 0 or 1, it resets to idle state.

Receive State Check Circuit

The reception indication output IR becomes high-level after receiving the same transmission code 2 or more times in succession. Therefore reception states of an instruction from the transmitter can be indicated by an LED connected to the output IR.

Reception Code, Data Output, Decode Output and Flip-flop Output

Data outputs $D_0 \sim D_6$ correspond to $D_0 \sim D_6$ of the transmission codes. When a code is 0, the data output will be low-level, and when a code is 1, the data output will be high-level, while decode outputs $\overline{STA} \sim \overline{STD}$ correspond to transmission codes D_4 , D_5 as shown in Table 1. When the transmission codes $D_0 \sim D_6$ are 1010000, the flip-flop output FF will go to high-level, and when the codes are 0101000, the output FF will go to low-level.

Table 2 shows the relationship between key codes and type numbers, and examples of their use.

Table 1 The relationship between the decode outputs and the transmission codes D_4 , D_5

Transmis	sion code		Decode		
D ₄	D ₅	STA	STB	STC	STD
0	0	L	н	н	н
1	0	н	L	н	н
0	1	Н	Н	L	н
1	1	Н	н	Н	L

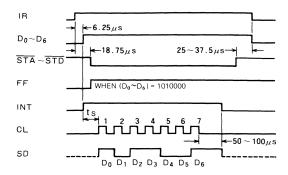
Table 2 The relationship between be key codes, types numbers examples of their use

	Key code		Type number	Use		
K ₀	K ₁	K ₂	Type number	USe		
0	0	0	M50111P M50116P M50117P	Remote control for audio equipment		
1	0	0	M50111AP M50116AP M50117AP	Remote control for TV, VTR		
0	1	0	M50111BP M50116BP M50117BP	Remote control for air conditioners and others		
0	0	1	M50111CP M50116CP M50117CP	Remote control for video-disk equipment		

M50111XP. M50116XP. M50117XP

30~120-FUNCTION REMOTE-CONTROL RECEIVER

Serial Data Processor


When an identical code is received twice, the reception indication output IR is turned from low-level to high-level and then after 6.25µs delay the interrupt output INT is turned from low-level to high-level (see the timing diagram). When pulses are supplied to the clock input CL for SD while the INT output is high-level, the received data are sent from the serial data output SD. These data are synchronized with the rising edge of the CL input pulses. Thus the contents of the transmission code can be read, if the SD output is decided at the falling edge of the CL input pulses.

The SD output is a three-state output, which is usually in the disabled state (high impedance). After an interrupt output INT goes to high-level, the disabled state is absolved at the first low-to-high transmission of a CL input pulses. And then the data $D_0{\sim}D_6$ is serially sent, and after $50{\sim}100\mu s$ from the seventh high-to-low transmission of CL input pulses, the SD output is again put in the disabled state and at the same time the INT output goes to low-level.

Power-on Reset Circuit

Attaching a capacitor to the terminal \overline{AC} , the power-on reset function can be activated when power supply is applied to the IC. When the \overline{AC} input is turned to low-level, the data outputs $D_0{\sim}D_6$, the reception indication output IR, the interrupt output INT and the flip-flop output FF go to low-level, the decode outputs $\overline{STA}{\sim}\overline{STD}$ go to high-level and the serial data output SD is put in disabled state.

Timing Diagram

After the INT output becomes high-level, when the received code is not identical to the previously received code before the first fall of the CL input, the INT output is returned to low-level; at the same time the $\overline{\text{STA}} \sim \overline{\text{STD}}$ outputs become high level and the SD output become a disabled state. After the INT output goes to high-level, when received codes are not identical after the first fall of the CL input, the data $D_0 \sim D_6$ are sent and then the INT output goes to low-level after $50 \sim 100 \mu \text{s}$ from the seventh fall of CL input pulses and the SD output is put in the disabled state.

The time t_s from the rising edge of the INT output to the rising edge of the CL input must be at least $6.25\mu s$.

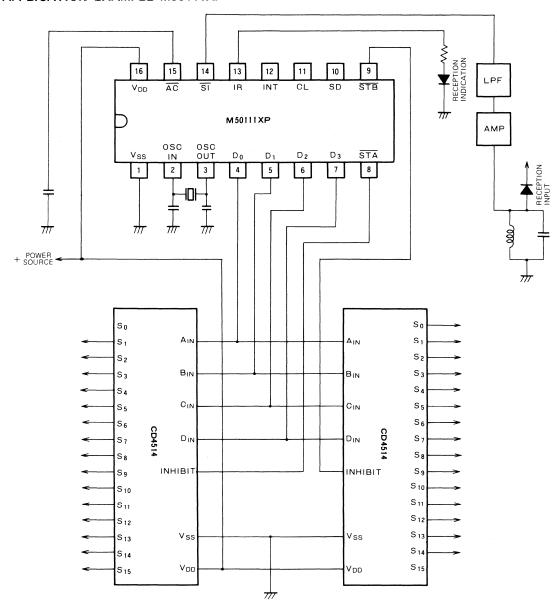
30~120-FUNCTION REMOTE-CONTROL RECEIVER

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{DD}	Supply voltage	With respect to V _{SS}	-0.3~9	V
Vı	Input voltage		V _{SS} ≦V _I ≦V _{DD}	V
Vo	Output voltage		V _{SS} ≦V ₀ ≦V _{DD}	V
Pd	Maximum power dissipation	Ta = 25°C	300	mW
Topr	Operating free-air temperature range		- 30 ~ 70	°C
Tstg	Storage temperature range		-40~125	°C

RECOMMENDED OPERATING CONDITIONS ($Ta = -30 \sim 70$ °C, unless otherwise noted)

Symbol			Unit		
Зуппьог	Parameter	Min	Nom	Max	Oiiit
V _{DD}	Supply voltage	4.5		8	V
VIH	High-level input voltage	$0.7 \times V_{DD}$		V _{DD}	V
VIL	Low-level input voltage	0		0.3×V _{DD}	V
4	Oscillation frequency		455		kHz
fosc	Oscillation frequency		480		kHz


ELECTRICAL CHARACTERISTICS (Ta = 25°C, unless otherwise noted)

Symbol	Parameter	-		Unit		
Symbol	ratanietei	Test conditions	Min	Тур	Max	Omi
V _{DD}	Operational supply voltage	$Ta = -30 - 70^{\circ}C$, $f_{OSC} = 455kHz$	4.5		8	V
I _{DD}	Supply current from V _{DD}	V _{DD} =5V, f _{OSC} =455kHz		0.3	1.0	mA
Гон	High-level output current, SD	$V_{DD} = 4.5V$, $V_{OH} = 2.4V$	- 2	- 6		mA
Гон	High-level output current, INT, IR	V _{DD} =4.5V, V _{OH} =2.4V	- 1	- 3		mA
Гон	High-level output current, $D_0 \sim D_6$, $\overline{STA} \sim \overline{STD}$, FF	V _{DD} =4.5V, V _{OH} =2.4V	-0.5	-1.5		mA
loL	Low-level output current, D ₀ ~D ₆ , STA~STD, FF, SD, INT, I	R V _{DD} =4.5V, V _{OL} =0.4V	1.6	3.2		mA
RI	Pull-up resistance, \$\overline{S1}\$			20		kΩ
Rı	Pull-up resistance, AC			48		kΩ
Rı	Pull-down resistance, CL			63		kΩ

M50111XP, M50116XP, M50117XP

30~120-FUNCTION REMOTE-CONTROL RECEIVER

APPLICATION EXAMPLE M50111XP

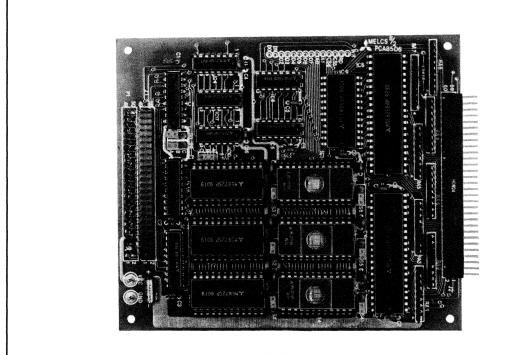
MICROCOMPUTER SYSTEMS

MELCS 85/2 MEMORY AND PARALLEL I/O EXPANSION BOARD

DESCRIPTION

The PCA8506 memory and parallel I/O expansion board is designed to be used with the PCA8501 or PCA8540 single-board computer. Memory, parallel I/O ports, and a timer are assembled on a 145 x 125 mm printed circuit board. The PCA8506 can easily be attached to the PCA8501 or PCA8540 single-board computer by using a bus-extension connector.

FEATURES


- Expansion board consisting of memory, parallel I/O ports, and a timer
- Memory capacity: 12K bytes (expandable in units of 2K bytes RAM or 2K bytes ROM)
- Programmable ports: 48 bits (8 bits x 6 ports)
- Programmable timer: 16 bits x 3
- Power supplied from the PCA8501 or PCA8540
 Compact dimensions (LxWxH): 125x145x17 mm

APPLICATIONS

- Personal computer expansion module
- Control equipment module

FUNCTION

The PCA8506 expansion board consists of up to 12K bytes memory, six 8-bit parallel I/O ports, along with 3 16-bit counters for timer application. The memory can easily be expanded in units of 2K bytes up to 12K bytes using any combination of M5L2716K EPROMs or M58725P static RAMs. The parallel I/O ports consist of 2 (programmable peripheral interfaces) (PPIs) each composed of 3 8-bit I/O ports. The timer consists of a programmable interval timer (PIT) which has 3 16-bit timer counters.

MELCS 85/2 MEMORY AND PARALLEL I/O EXPANSION BOARD

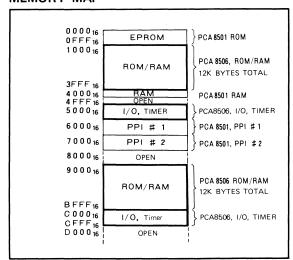
OPERATION

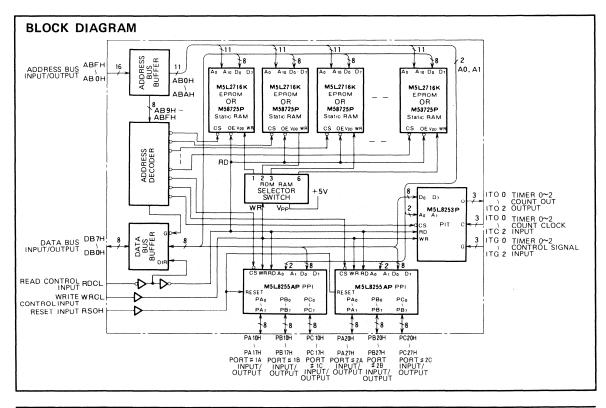
The address bus of the CPU is connected to other boards through the address bus buffer. The data bus is connected to the data input/output pins of memory, I/O, and a timer through the bidirectional data bus buffer. The data bus buffer is in an active state only when an IC device on the board is selected. The buffer is ready for output to external units only when the read signal RDCL from the CPU goes low.

Six 24-pin sockets are provided for memory, which are designed for M5L2716K EPROMs. Since the M5L2716K is compatible with the M58725P except for Vpp/WR (pin 21), if pin 21 is switched on the connector corresponding to a socket, a M58725P static RAM can be used in place of a M5L2716K EPROM in that socket. It is therefore possible to mix ROMs and RAMs in any order desired by the user.

Since addresses have been allocated on the memory map for the 2 parallel I/O ports and a timer the contents can be read and written in the same way memory is accessed.

All ports of PPIs are initiated to the input mode after the power is turned on, and remain in this mode until a control word is written. As soon as the counter is set by the control word, following the operation mode, the timer will begin to count.


DIMENSIONS


(LxWxH) 125x145x17 mm

MEMORY AND I/O ADDRESSING

Both memory and I/O addresses can select two areas. When this board is added, different address areas from those of the main board should be selected.

MEMORY MAP

MELCS 85/2 MEMORY AND PARALLEL I/O EXPANSION BOARD

SPECIFICATIONS

Memory Address and Memory Capacity

Memory Address (Note 1)

1: 1000₁₆~17FF₁₆

2: 1800₁₆~1FFF₁₆

3 : 2000₁₆~27FF₁₆

4 : 2800₁₆~2FFF₁₆

5 : 3000₁₆~37FF₁₆

6:3800₁₆~3FFF₁₆

Memory Capacity

#1: 2K bytes (only the socket is supplied)

#2: 2K bytes (only the socket is supplied)

#3: 2K bytes (only the socket is supplied)

#4: 2K bytes (only the socket is supplied)

#5: 2K bytes (only the socket is supplied)

#6: 2K bytes (only the socket is supplied)

Either the M5L2716K EPROM or M58725P RAM can be used in the sockets.

I/O and Timer Addresses and I/O Capacity

I/O and timer addresses (Note 1)

	Name		Signal designation	Address
Port #1	PA PB PC CW		PA10H ~ PA17H PB10H ~ PB17H PC10C ~ PC17H Control Word	5000 ₁₆ 5001 ₁₆ 5002 ₁₆ 5003 ₁₆
Port #2	PA PB PC CW		PA20H ~ PA27H PB20H ~ PB27H PC20H ~ PC27H Control Word	5100 ₁₆ 5101 ₁₆ 5102 ₁₆ 5103 ₁₆
Timer	COUNTER	0 1 2	Interval timer 0 Interval timer 1 Interval timer 2 Control Word	5200 ₁₆ 5201 ₁₆ 5202 ₁₆ 5203 ₁₆

Note 1: The address area can be altered by using an inline connector as follows:

Memory 9000₁₆~BFFF₁₆

I/O Capacity

Port #1 : 8 bits x 3 ports = 24 bits Port #2 : 8 bits x 3 ports = 24 bits

Port #2 : 8 b

Interface

Bus : All signals are TTL compatible (fanout LS TTL 1

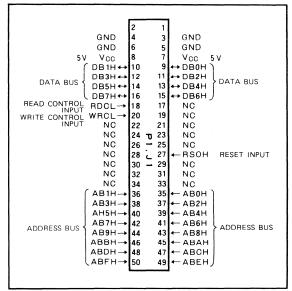
gate).

 $\ensuremath{\mathsf{I/O}}$ and $\ensuremath{\mathsf{Timer}}$: All signals are $\ensuremath{\mathsf{TTL}}$ compatible.

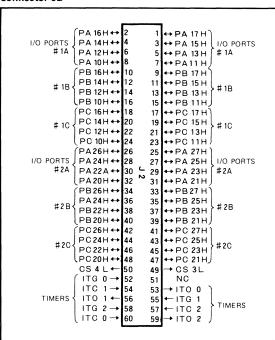
Connectors

1. P1 (for bus): Straight dip-type, 50 pins.

2. J1 (for bus): Straight pin header, T-type, 50 pins.


3. J2 (for I/O): Angle pin header, L-type, 60 pins.

Power


5V, 1A maximum (when six M5L2716Ks are loaded).

PIN CONFIGURATION

Connectors P1 and J1

Connector J2

PCA8506

MELCS 85/2 MEMORY AND PARALLEL I/O EXPANSION BOARD

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc	Supply voltage		0~6.5	V
Vı	Input voltage	With respect to GND	5.5	V
V ₀	Output voltage		5.5	V
Topr	Operating free-air ambient temperature range		0~55	°C
Tstg	Storage temperature range		-30~70	°C

RECOMMENDED OPERATING CONDITIONS ($Ta=0\sim55^{\circ}C$, unless otherwise noted)

Complete		Limits			Unit
Symbol	Parameter		Nom	Max	Onit
Vcc	Supply voltage	4.75	5	5.25	V
VIH	Low-level input voltage	2			V
VIL	High-level input voltage			0.8	V

ELECTRICAL CHARACTERISTICS (Ta=0~55°C, $V_{CC}=5V\pm5\%$, unless otherwise noted)

Symbol Parameter	2		Limits			Unit
	Test conditions	Min	Тур	Max	Ont	
VoH	High-level output voltage PA11H~PC27H output	$I_{OH} = -50 \mu A$	2.4			V
VoH	High-level output voltage, IT00~IT02 output	$I_{OH} = -150\mu A$	2.4			V
VoL	Low-level output voltage, PA11H~PC27H output	I _{OL} =1.6mA			0.4	٧
VoL	Low-level output voltage, IT00~IT02 output	I _{OL} = 1.6mA			0.4	V

MITSUBISHI MICROCOMPUTERS PCA8507

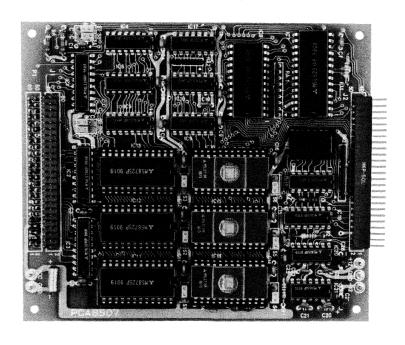
MELCS 85/2 MEMORY AND SERIAL I/O EXPANSION BOARD

DESCRIPTION

The PCA8507 memory and serial I/O expansion board is designed to be used with the PCA8501 or PCA8540 single-board computer. Memory, a serial I/O port and a timer are assembled on a 145 x 125 mm printed circuit board. The PCA8507 can easily be attached to the PCA8501 or PCA-8540 single-board computer by using a bus-extension connector.

FEATURES

- Expansion board consists of memory, a serial I/O and a timer
- Memory capacity: 12K bytes (expandable in units of 2K bytes RAM or 2K bytes ROM)
- Serial I/O port and TTL, RS-232-C interface
- Programmable timer, 16 bits x 3
- Power supply from the PCA8501 or PCA8540
- Compact, dimensions (LxWxH): 125x145x17mm


APPLICATIONS

- Personal computer expansion module
- Control equipment module
- Data terminal module

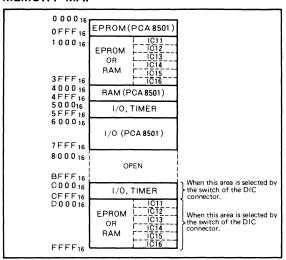
FUNCTION

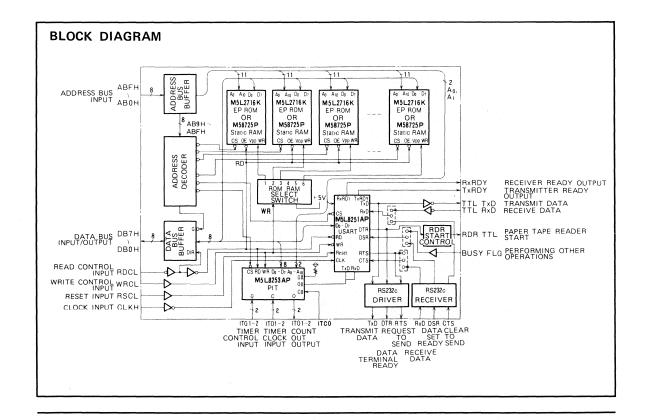
The PCA8507 expansion board consists of up to 12K bytes of memory, serial I/O port, interface for TTL level and RS-232-C output, along with 3 16-bit counters for timer application.

The memory can easily be expanded in units of 2K bytes up to 12K bytes using any combination of M5L-2716K EPROMs and M5825P static RAMs. The serial I/O port consists of a universal synchronous asynchronous receiver transmitter (USART) for changing parallel/serial and formatting the string in the specified format. Interfaces are provided between the USART and the TTL level or RS-232-C output. The interface is selected by a jumper connection. The timer consists of a programmable interval timer (PIT) which has 3 16-bit timer counters. One of the timers is used by the USART for controlling the baud rate of serial data transfer.

MELCS 85/2 MEMORY AND SERIAL I/ O EXPANSION BOARD

OPERATION


The address bus of the CPU is connected to other boards through the address bus buffer. The data bus is connected to the data input/output pins of memory, I/O, and a timer through the bidirectional data bus buffer. The data bus buffer is in an active state only when an IC device on the board is selected. The buffer is ready for output to external units only when the read signal RDCL from the CPU goes low.


Six 24-pin sockets are provided for memory, which are designed for M5L2716K EPROMs. Since the M5L2716K is compatible with the M58725P except for V_{PP}/WR (pin 21), if pin 21 is switched on the connector corresponding to a socket, an M58725P static RAM can be used in place of an M5L2716K EPROM in that socket. It is therefore possible to mix ROMs and RAMs in any order desired by the user.

Since addresses have been allocated on the memory map for the USART as a serial I/O port and a timer the contents can be read and written in the same way memory is accessed. TTL and standard RS-232-C interfaces are built on the board to interface between the serial I/O port and peripheral devices. Selection of one or the other interface is done by a jumper in the jumper socket. The timer con-

sists of 3 16-bit counters. One of the counters is used as a clock by the USART in setting the baud rate.

MEMORY MAP

MELCS 85/2 MEMORY AND SERIAL I/O EXPANSION BOARD

SPECIFICATIONS

Memory Address and Memory Capacity

Memory Address (Note 1)

1: 1000₁₆~17FF₁₆

2 : 1800₁₆~1FFF₁₆

3: 2000₁₆~27FF₁₆

4 : 2800₁₆~2FFF₁₆

 $#5:3000_{16}\sim37FF_{16}$

6:3800₁₆~3FFF₁₆

Memory Capacity

#1: 2K bytes (only the socket is supplied)

#2: 2K bytes (only the socket is supplied)

#3: 2K bytes (only the socket is supplied)

#4: 2K bytes (only the socket is supplied)

#5: 2K bytes (only the socket is supplied)

#6: 2K bytes (only the socket is supplied)

Either the M5L2716K EPROM or M58725P RAM can be used in the sockets.

I/O and Timer Addresses and I/O Capacity

I/O and timer addresses (Note 1)

7	Name			Address
Serial port	TD		Parallel data	5000 ₁₆
	CW		Control word	5001 ₁₆
Timer	COUNTER	0	Interval timer 0	5100 ₁₆
	"	1	Interval timer 1	5101 16
	"	2	Interval timer 2	5102 ₁₆
	CW		Control word	510316

Note 1 The address area can be altered by using an inline con-

Memory D000₁₆~FFFF₁₆

I/O and Timer CXXX₁₆

INTERFACE

Bus : All signals are TTL compatible (fanout LS

TTL 1 gate).

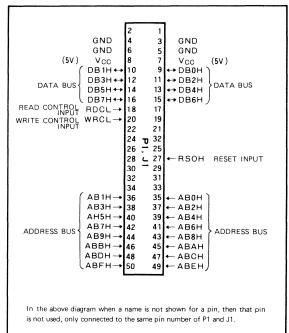
Timer : All signals are TTL compatible (fanout TTL

1 gate).

Serial I/O: TTL level or RS-232-C standard interface.

CONNECTORS

1. P1 (for bus): Straight dip-type, 50 pins


2. J1 (for bus): Straight pin header, T-type, 50 pins 3. J2 (for I/O): Angle pin header, L-type, 50 pins

POWER

5V, 1A maximum (when six M5L2716Ks are loaded)

±12V (when used as an RS-232-C interface)

PIN CONFIGURATION (Connectors P1 and J1)

Connector J2

(12V) VCC GND (-12V) VBB NC NC NC NC NC GND

MELCS 85/2 MEMORY AND SERIAL I/O EXPANSION BOARD

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
V _{CC}	Supply voltage		0~6.5	V
V _{DD}	Supply voltage (plus supply for RS-232-C)		15	V
V _{BB}	Supply voltage (minus supply for RS-232-C)	With respect to GND	-15	V
VI	Input voltage		5.5	V
Vo	Output voltage		5.5	V
Topr	Operating free-air ambient temperature range		0~55	V
Tstg	Storage temperature range		−30~70	°C

RECOMMENDED OPERATING CONDITIONS ($T_a=0\sim55^{\circ}C$, unless otherwise noted)

Combal			Limits			
Symbol	Parameter		Nom	Max	Unit	
V _{CC}	Supply voltage	4.75	5	5.25	V	
VIH	High-level input voltage	3		Vcc	V	
VIL	Low-level input voltage	0		0.65	V	
V _{DD}	Supply voltage (plus supply for RS-232-C)	10.8	12	13.2	V	
V _{BB}	Supply voltage (minus supply for RS-232-C)	-13.2	- 12	-10.8	٧	

ELECTRICAL CHARACTERISTICS ($Ta=0\sim55^{\circ}C$, $V_{CC}=5V\pm5\%$, unless otherwise noted)

Symbol	D	Test conditions	Limits			111-14	
Symbol	Parameter		Min	Typ	Max	Unit	
VoH	High-level output voltage	DBOB~DB7B	I _{OH} = - 3 mA	2.4			V
	High-level output voltage	ABOB, AB1B	I _{OH} = - 3 mA	2.4			٧
	High-level output voltage	IT01, IT02	I _{OH} = - 150μA	2.4			V
	High-level output voltage	CS2L~CS6L	$I_{OH} = -400 \mu A$	2.7			V
	High-level output voltage	TxDRH, DTRRH, RTSRH	$V_{CC+} = 10.8V$, $V_{CC-} = -13.2V$ $V_{IL} = 0.8V$, $R_L = 3 \sim 7k\Omega$	5			٧
VoL	Low-level output voltage	DB0B~DB7B	I _{OL} =12mA			0.4	· V
	Low-level output voltage	AB0B, AB1B	I _{OL} = 12mA			0.4	V
	Low-level output voltage	IT01, IT02	I _{OL} =1.6mA			0.45	V
Ì	Low-level output voltage	CS2L~CS6L	I _{OL} = 4 mA			0.4	٧
	Low-level output voltage	TxDRH, DTRRH, RTSRH	$V_{CC+} = 10.8V$, $V_{CC-} = -10.8V$ $V_{IH} = 2 V$, $R_L = 3 - 7 k\Omega$			-5	٧

MITSUBISHI MICROCOMPUTERS PCA8520G01, G02

MELCS 85/3 VOICE GENERATING SINGLE-BOARD COMPUTER

DESCRIPTION

The PCA8520 is a voice generating single-board computer. It consists of an 8-bit M5L8085AP microprocessor, memory, I/O interface, voice reproducing IC, and is fabricated on a single 125 x 145 mm printed circuit board. Voice data is first recorded in EPROMs and is changed into voice data through delta modulation system.

FEATURES

Туре	Contents
PCA 8520 G01	Single-board computer only
PCA 8520G02	PCA8520G01 single-board computer 1 pc.
	M5L2716K (007) EPROM for control
	program storage 1 pc.
	(008~014) EPROMs for voice data storage 7 pcs.
	Speaker
	Instruction manual

- A single-board computer complete with CPU, memory,
 I/O interface and voice reproducing IC.
- Storage capacity of the EPROM:

using M5L2716K: 16K bytes (max) using M5L2732K: 32K bytes (max)

Storage capacity of the RAM: 256 bytes

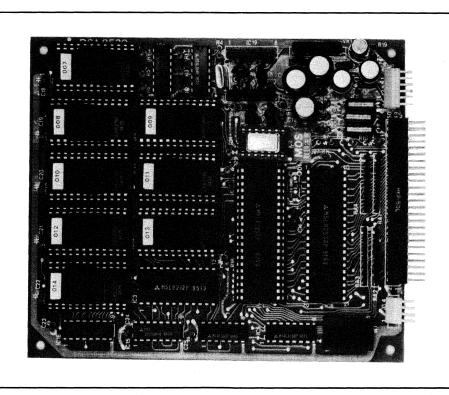
• I/O interface: 24 bits (8 bits x 3)

Voice recording time:

using M5L2716K: 9 seconds (max) using M5L2732K: 18 seconds (max)

Voice maximum output power (at $V_{CC2} = 9V$):

1W (typ)


Compact dimensions (LWH) 125x145x20 mm

APPLICATIONS

- An alarm device to be used in factories, offices, etc.
- A recorded sales message device
- An audio output information device
- A device to give voice operation instructions
- Numerical value response for measurement instruments and calculators

FUNCTION

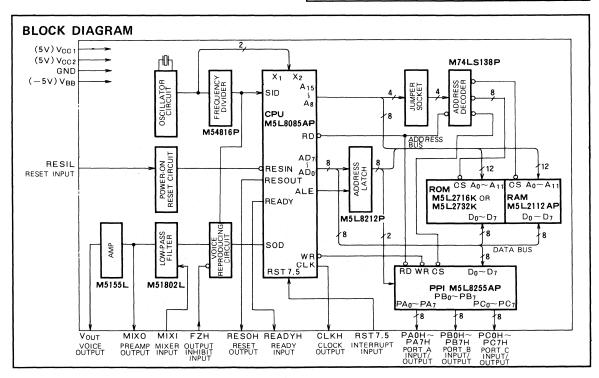
The PCA8520 is a single-board computer with a voice generating function, and is designed around Mitsubishi's M5L8085AP CPU, its LSI family, and voice reproducing IC. It comes with 16K bytes (M5L2716K x 8) or 32K bytes (M5L2732K x 8) of read-only memory and 256 bytes (M5L2112AP) of random-access memory. The

MELCS 85/3 VOICE GENERATING SINGLE-BOARD COMPUTER

PCA8520 has 1 M5L8255AP programmable peripheral interface (PPI) which offers 24 bits (8 bits x 3) of programmable I/O port.

Voice reproducing is performed through an IC for delta demodulation, a low-pass filter, and a power amplifier. Voice data in the ROM can be sent to the voice reproducing circuit by program control, and then output with 1W of power.

A nine-second message can be output when using 8 M5L2716Ks. An eighteen-second message is possible when using 8 M5L2732Ks. Voice data can be output at both syllable- and word-levels, and can be edited under program control.


OPERATION

The M5L8085AP CPU executes programs stored in the ROM synchronizing with a quartz ocillator clock. The frequency of this clock is divided by 256 and is supplied to the SID terminal of the CPU and the input of the IC for delta demodulation. The voice can be generated using voice data. This voice data, which is stored in the ROM, is converted parallel to serial and is sent to the SOD terminal in sequence from the most-significant bit.

The M5L2112AP RAM can be used as a data stack, etc. The M5L8255AP PPI can be used for external data inputs or outputs.

BLOCK DIAGRAM NOTATION

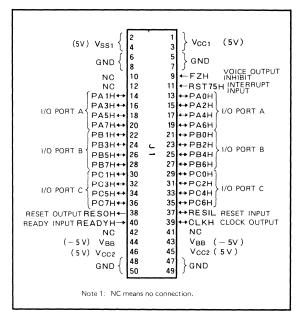
Name	Function
Reset circuit	A system reset signal is generated when power is turned on.
Oscillator circuit	The clock is supplied to the CPU and the frequency divider circuit.
Frequency divider circuit	The frequency of the oscillator clock is devided by 256 and is supplied to the voice reproducing circuit.
CPU	Executes the program
Address latch	As the data and low-order address signals are sent from $AD_0 \sim AD_7$ terminals of the CPU using timesharing technique, only the address signal is latched into the address latch circuit by the ALE timing signal.
Jumper socket	M5L2716Ks or M5L2732Ks can be selected by simply changing the jumper wire in the jumper socket.
Address decoder	Generates the selection signal of a ROM, RAM, and PPI decoding the high-order bits of the address signal
ROM	Memory to store program and voice data
RAM	Memory to store data stack, temporaly data, etc.
PPI	Is used for external data inputs and outputs
Voice reproducing circuit	Reproduces voice waveform from the digital signal which is sent from the SOD terminal of the CPU
Low-pass filter	This filter only passes low-frequency voice signals.
Amplifier	Voice signal passed through the low-pass filter is amplified to 1W.

SPECIFICATIONS

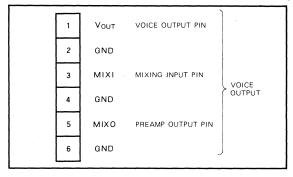
Ite	m	Contents			
Method		CVSD Method			
CPU device		Mitsubishi M5L8085AP			
Cycle time		Basic instruction time 2.2µs (at 3.6MHz crystal oscillator frequency)			
	ROM	16K bytes (max) using M5L2716Ks address 0000 ₁₆ ~3FFF ₁₆			
Memory	ном	32K bytes (max) using M5L2732Ks address 0000 ₁₆ ~7FFF ₁₆			
	RAM	256 bytes address C000 ₁₆ ~C0FF ₁₆			
I/O interface	•	Programmable I/O ports: 8 bits x 3 ports (PPI M5L8255AP) address 8000 ₁₆ ~8003 ₁₆			
Voice record	ling time	9 seconds using M5L2716Ks (max) 18 seconds using M5L2732Ks (max)			
Voice maxin		1W (V _{CC2} =5V, THD=10% f=1kHz)			
Interrupt		1 interrupt, 1 level			
Auxillary ur	nits	MELCS 85/1 microcomputer console voice data unit			
Power supply		5V (Two power sources: V _{CC1} , V _{CC2}), -5V			
Connectors)-i	Angle pin, header type 50 pins (for the I/O ports) Angle pin, header type 6 pins (for voice output) Angle pin, header type 4 pins (for power)			
Physical dim	ensions	(LxWxH): 125x145x20mm			

CONNECTORS

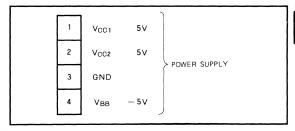
I/O Ports: (Connector J1)


angle pin header L-type 50 pins

Power: (Connector J2)

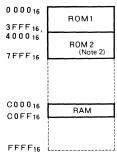

angle pin header L-type 4 pins Voice Output: (Connector J3) angle pin header L-type 6 pins

PIN CONFIGURATION Connector J1


MELCS 85/3 VOICE GENERATING SINGLE-BOARD COMPUTER

Connector J2

Connector J3



I/O ADDRESS

	PPI							
	Port A	Port B	Port C	C, W				
I/O Address	80 16	8116	82 ₁₆	83 ₁₆				

MELCS 85/3 VOICE GENERATING SINGLE-BOARD COMPUTER

MEMORY ADDRESS MAP

Note 2: ROM2 is additional storage area when 8 M5L2732Ks are used.

3: ROM is fully decoded, but RAM and PPI are not.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Limits	Unit
Vcc1	Supply voltage		0~7	V
Vcc2	Supply voltage		0~15	V
V _{BB}	Supply voltage	With respec to GND	−15~0	V
VI	Input voltage		5.5	V
Vo	Output voltage		0~5.5	V
Topr	Operational free-air ambient temperature range		0~55	°C
Tstg	Storage temperature range		−30~70	°C

RECOMMENDED OPERATING CONDITIONS (Ta = 0 ~ 55 ℃, unless otherwise noted.)

Symbol	Parameter		Unit		
Symbol	raianietei	Min	Nom	Max	Onit
Vcc1	Supply voltage	4.75	5	5.25	٧
VCC2	Supply voltage	4	5	12	V
V _{BB}	Supply voltage	— 18	- 5	- 4	V
ViH	High-level input voltage	2			٧
VIL	Low-level input voltage			0.8	٧

ELECTRICAL CHARACTERISTICS (Ta = 0 ~ 70 °C, unless otherwise noted.)

Symbol	Parameter	Test conditions		Unit		
Symbol	i al ameter	Total contantons		Тур	Max	Omit
Vон	High-level output voltage, RES0H, CLKH	I _{OH} = - 400 μ A	2.4			V-
Vol	Low-level output voltage, RESOH, CLKH	I _{OL} =2mA			0.45	٧
Vон	High-level output voltage, PA0H~PC7H	I _{OH} = - 200 μA	2.4			V
Vol	Low-level output voltage, PA0H~PC7H	I _{OL} =1.7mA			0.45	V
V _{IH}	High-level input voltage, RESIL		2.4		V _{CC} +0.5	٧
VIL	Low-level input voltage, RESIL		-0.3		0.8	٧
Vıн	High-level input voltage, READY, RST75H		2.2		V _{CC} +0.5	٧
VIL	Low-level input voltage, READY, REST75H		-0.3		0.8	V
Po	Voice maximum output power,	THD=10%, f=1kHz, $V_{CC2}=9V$ R _L =8 Ω , Ta=25°C	0.7	1		w
1001	Supply current from V _{CC1}	When 8 M5L2716K EPROMs are used.		450	900	mΑ
1002	Supply current from V _{CC2}				400	mA
1 _{BB}	Supply current from V _{BB}				100	mA

MELCS 85/2 COLOR TV DISPLAY SINGLE-BOARD COMPUTER

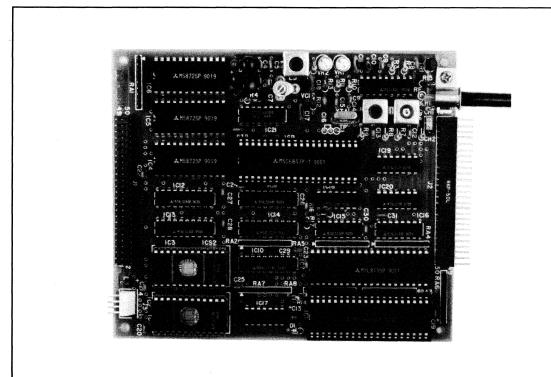
DESCRIPTION

The PCA8540 is a single-board computer of the MELPS 85 LSI family. The TV interface is fabricated on a single 125 x 145 mm printed circuit board. It provides for screen displaying with a resolution of 256 x 192 elements maximum in 2 colors, up to 8 colors in semigraphic 4, or up to 64 ASCII coded characters. A simple connection to the antenna terminal allows it to be used with a home color TV receiver. The PCA8540 also produces composite video signals that can be connected directly to the video monitor.

FEATURES

Туре	Function
PCA8540G01	For home-use TV with output of NTSC system signals for Japan Channel 1 or 2 Contains no EPROMs Contains only one M58725P for screen memory
PCA8540G02	For video monitor TV with monochrome video monitor signals Contains no EPROMs Contains only one M58725P for screen memory

- A single-board computer complete with CPU, memory, I/O and TV interface
- Enables up to 256(H) x 192(V) elements graphic display on a home color TV receiver (or monochrome video monitor)
- Up to 64 characters can be displayed


- The 64 ASCII characters are stored on an internal character generator ROM and can be displayed together with semigraphics 4 mode
- Provide 9 colors on screen: green, yellow, blue, red, light gray, cyan, magenta, orange and black
- ROM 4K bytes (max) + RAM 256 bytes or ROM 2K bytes + RAM 2.25K bytes
- Programmable I/O port with timer: 22 bits
- Compact: dimensions (LxWxH): 125x145x20 mm
- Expandable memory and I/O (using memory I/O expansion board PCA8506 or PCA8507)

APPLICATION

- TV games
- Data terminal with graphic capability
- Display terminal for microcomputer systems
- Commercial advertising display
- Slave computer for a MELCS 85/2 system

FUNCTION

The PCA8540 is a single-board computer, with color TV display capabilities designed to be compatible with the Mitsubishi M5L8085AP CPU and its LSI family as well as the VDG (video display generator) LSI M5C6847P-1. The PCA8540 comes with 4K bytes of ROM + 256 bytes

11

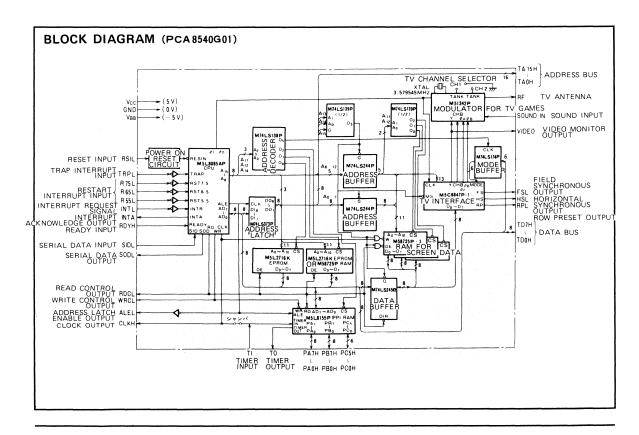
MELCS 85/2 COLOR TV DISPLAY SINGLE-BOARD COMPUTER

of RAM or 2K bytes of ROM + 2,304 bytes of RAM along with 3 I/O ports (22 bits). ROM, RAM and I/O are provided by the M5L2716K \times 2 + M5L8155A or M5L2716K + M58725P + M5L8155A.

The TV interface of the G01 system consists of a VDG LSI M5C6847P-1 (TV interface), an M51342P RF modulator IC and 3 M58725P 16K static RAMs which are used for screen display memory. The G02 system has a video amp circuit instead of an M51342P.

As the various display modes can be programmed using an M5C6847P-1, the following can be displayed.

- Character display, pattern stored on internal ROM
- Reverse character display (one character)
- Semigraphics 4 (up to 8 colors)
- Semigraphics 6 (up to 4 colors)
- 64 x 64
 4 colors
 128 x 64
 2 colors
- 128 x 64 4 colors
 128 x 96 2 colors
- 128 x 96 4 colors
 128 x 192 2 colors
- 128 x 192 4 colors 256 x 192 2 colors

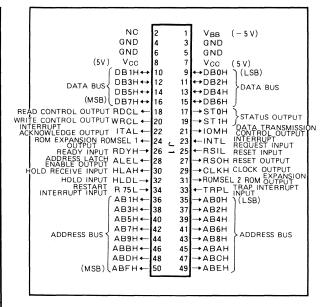

The PCA8506 and PCA8507 are used, for memory I/O expansion boards, to expand to a maximum of 16K bytes of ROM or RAM, an RS-232-C serial interface can be used.

OPERATIONS

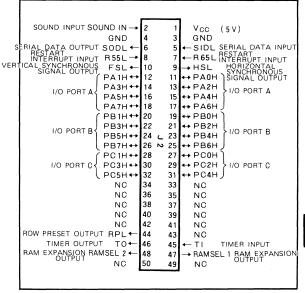
The program for the M5L8085AP CPU is normally stored on 2 M5L2716K EPROMs (2 x 2K bytes) and an M5L8155P RAM (256 bytes) but 1 M5L2716K EPROM can be replaced by an M58725P RAM (2K bytes). Data transmission to and from external sources is done through the ports of the M5L8155P.

There is a data buffer between the M5C6847P-1 and the CPU on the address and data bus. This allows the M5C-6847P-1 to operate independently of the CPU when reading information from the M58725P RAM for screen data. It adds synchronous signal before it is output serially to the M51342P TV game modulator. The signal includes the intensity and color signals which are modulated by the M51342P into NTSC system TV signals for channel 1 or 2. The M5C6847P-1's composite video signal can be used for input to the monochrome video monitor.

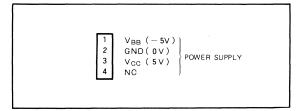
When the CPU accesses the RAM, addresses 6000_{16} $^{\circ}$ $77FF_{16}$ for screen data, $\overline{\rm MS}$ of the M5C6847P-1 will be at low-level and the address output will be in high-impedance state. During this period the CPU can change the contents of the RAM for screen data. The CPU can also change the display mode of the M5C6847P-1 through the data bus by accessing mode set address 4800_{16} .


SPECIFICATIONS

Item	Description
Method	8-bit parallel operation
CPU Component	Mitsubishi's M5L8085AP (equivalent to the intel 8085A)
Cycle time	Basic instruction time 2.23µs (at clock frequency 1.79 MHz)
Memory	EPROM 4K bytes (M5L2716K x 2) Address 0000 ₁₆ ~0FFF ₁₆ or 2K bytes (M5L2716K x 1) (Note 1) Address 0000 ₁₆ ~07FF ₁₆
	256 bytes (M5L8155P) Address 4000 ₁₆ ~40FF ₁₆ or 2304 bytes (M5L8155P + M58725P) Address 08000 ₁₆ ~0FFF ₁₆ (Note 1) 4000 ₁₆ ~40FF ₁₆
	Screen Memory (Note 2) 6K bytes (M5872P x 3) Address 6000 ₁₆ ~77FF ₁₆
1/0	Programmable port 22 bits (M5L8155P) Address 4100 ₁₆ ~4105 ₁₆ Serial input/output Opens SID. SOD of CPU
Video output	G01: NTSC system, Japan, channel 1 or 2 G02: Monochrome composite video monitor signal
Display method	Priority CPU
Interrupt	5-level (INTR, RST55, RST65, RST75, TRAP)
Support device	PCA0803 (program checker) can be used PC8500 (portable microcomputer console) can be used.
Power supply	G01: 5V ±5%, -5V ±5% G02: 5V ±5%
Applicable connector	Straight pin header 50 pins (for bus extension) Angle pin header 50 pins (for I/O port)
Physical dimensions	(L x W x H): 125 x 145 x 20 mm


Note 1: By switch of ROM/RAM connector.

2: 0.5K bytes are used for screen data and 5.5K bytes can be used for data.


PIN CONFIGURATION Connector J1

Connector J2

Connector J3

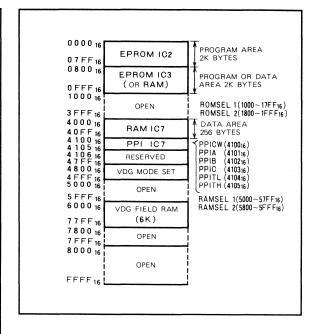
MELCS 85/2 COLOR TV DISPLAY SINGLE-BOARD COMPUTER

INTERRELATION BETWEEN EACH MODE AND THE SCREEN

Ā/S	INV	Ā/G	T/E	css	GM2	GM1	GM0		Color (N	lote 5)	Disales			Memory Capacity
(D ₇)	(D ₆)	(D ₅)	(D ₄)	(D ₃)	(D ₂)	(D ₁)	(D ₀)	Character	Back- ground	Border	Display	Data	Mode	(Bytes)
0	0	0	0	0	×	×	×	Green	Black	Black	5 35.	D ₇ D ₆ D ₅ D ₄ D ₃ D ₂ D ₁ D ₀		
	1				ļ			Black	Green		5 x 7 Dot matrix	(Note 4)	Alpha numeric 32 characters x 16 lines	0.5K
0	0	0	0	1	×	×	×	Orange	Black Orange	Black	1 char.		32 Characters x 10 miles	
	'	-			-	1 4		Black			D ₃ D ₂	[4	C	
1	X	0	0	X	X	X	X	8 Co	olor ①	Black	D ₁ D ₀	Color - Luminance	Semigraphic 4 64 x 32 picture elements	0.5K
X	×	0	1	0	×	×	×	4 Co	olor ②	Black	D ₅ D ₄ D ₃ D ₂		Semigraphic 6 64 x 48 picture elements	0.5K
X	×	0	1	1	×	×	×	4 Co	lor 3		D ₁ D ₀	Color Luminance		
×	×	1	×	0	0	0	0	4 Co	lor 4	Green	E ₃ ~ E ₀		64×64 Color graphic	1K
×	×	1	×	1	0	0	0	4 Co	lor (5)	Dark gray		E ₃ E ₂ E ₁ E ₀		
×	×	1	×	0	0	0	1	2 Co	lor 6	Green	D ₇ ~ D ₀		128×64 Graphic	1K
×	×	1	×	1	0	0	1	2 Co	lor ⑦	Dark gray		Luminance	Grapine	
×	×	1	x	0	0	1	0	4 Co	lor 4	Green	E ₃ ~E ₀		128×64 Color graphic	2K
×	×	1	×	1	0	1	0	4 Co	olor ⑤	Dark gray		E ₃ E ₂ E ₁ E ₀	Color grapino	
X	X	1	x	0	0	1	1	2 Co	lor ⑥	Green	D ₇ ~ D ₀		128×96	2K
X	×	1	×	1.	0	1	1	2 Co	lor ⑦	Dark gray	[57 - 50]	Luminance	Graphic	
X	×	1	x	0	1	0	. 0	4 Co	lor 4	Green	E ₃ ~E ₀		128×96 Color graphic	3K
X	×	1	х	1	1	0	0	4 Co	lor ⑤	Dark gray		Ě3 Ě2 Ě1 Ě0 Color	Color grapme	
X	×	1	x	0	1	0	1	2 Co	ilor ⑥	Green	D ₇ ~ D ₀		128×192	3K
X	x	1	×	1	1	0	1	2 Co	olor ①	Dark gray	[07 00]	Luminance	Graphic	Jik
X	×	1	X	0	1	1	0	4 Co	lor 4	Green	E ₃ ~E ₀		128×192	6K
X	×	1	X	1	1	1	0	4 Co	lor ⑤	Dark gray	[-3 -0]	E ₃ E ₂ E ₁ E ₀	Color graphic	
X	×	1	X	0	1	1	1	2 Co	olor ⑥	Green	D ₇ ~ D ₀		256×192	6K
×	×	1	×	1	1	1	1	2 Co	lor ①	Dark gray		Luminance	Graphic	

Note 3: INV (reverse of character) is determined by D₆ of data (when D₆ $\begin{array}{cc} 1 \rightarrow & 1 \\ 0 \rightarrow & 0 \end{array}$

^{4:} When $\overline{I}/E(D_4) = 0$, \overline{A}/S is determined by D_7 of data (1 = Semigraphics 4 mode, 0 = Character mode)


^{5:} Details regarding color are on the next page.

COLOR DETAILS

				Color	data	
	D ₆	D ₅	D ₄	D ₃ ~	- D ₀	
	×	X	X	0	Black	
	0	0	0	1	Green	
8	0	0	1	. 1	Yellow	
Colors	0	1	0	1	Blue	
①	0	1	1	1	Red	
	1	0	0	1	Dark gray	
	1	0	1	1	Cyan	
	1	1	0	1	Magenta	
	1	1	. 1	1	Orange	
	css	D ₇	D ₆	D ₅ ~	-D ₀	
4	0	Χ	X	0	Black	
Colors	. 0	0	, , 0	1.	Green	
2	0	0	1	. 1	Yellow	
	0	- 1	0	1	Blue	
	0	1	1	1	Red	
	1	Х	×	0	Black	
4	1	0	0	1	Dark gray	
Colors	1	0	1	1	Cyan	
3	1	1	0	1	Magenta	
	1	1	1	1	Orange	
	css	D_7	D ₆ (D ₅ D ₄ , [D_3D_2, D_1D_0	
4	0	0	0		Green	
Colors	0	0	1		Yellow	
4	0	1	0		Blue	
	0	1	1		Red	
4	1	0	0		Dark gray	
Colors	1	0	1		Cyan	
(5)	1	1	0		Magenta	
	1	1	1 .		Orange	
2	css	D ₇	(D ₆ ~D ₀)			
Colors	0	0			Black	
6	0	1			Green	
2 Colors	1	0			Black	
Colors ①	1	1			Dark gray	

MEMORY ADDRESS MAP

MELCS 85/2 COLOR TV DISPLAY SINGLE-BOARD COMPUTER

MEMORY CAPACITY AND I/O EXPANSION

The capacity of the PCA8540 can be easily expanded by the addition of other boards such as the PCA8506 or PCA8507.

PCA8506 (ROM, RAM and Parallel I/O Extension)

Features

•	Memory capacity	12K bytes (Note 6)
•	Programmable ports 48 bits	8 hits x 6

• Small size, dimensions (LxWxH) 145x125x17 mm

PCA8507 (ROM, RAM and Serial I/O Extension)

Features

•	Memory capacity	 	12K bytes (Note 6)
_		 	_

Serial port (RS-232-C or TTL Level) 1 port
 Programmable timers 16 bits x 3

• Small size, dimensions (LxWxH) 145x125x17 mm

Note 6: The memory can easily be expanded in units of 2K bytes up to 12K bytes using any combination of M5L2716K EPROMs and M58725P static RAMs.

MELCS 85/2 COLOR TV DISPLAY SINGLE-BOARD COMPUTER

Absolute Maximum Ratings

Symbol	Parameter		Conditions	Limits	Unit
Vcc	Supply voltage			0~7	V
V _{BB}	Supply voltage Input voltage		With respect to GND	0.3~-6.5	V
VI				5.5	
_	Operational free-air ambient temperature range	PCA8540 G01	Logical circuit	5~50	°C
Topr		PCA8540 G02	Logical circuit	0~55	°C_
Tstg	Storage temperature range			−10~70	°C

Recommended Operating Conditions ($T_a = 5 \sim 40^{\circ}C$, unless otherwise noted.)

6	Parameter		Limits			
Symbol		Min	Nom	Max	Unit	
Vcc	Supply voltage	4.75	5	5.25	V	
V _{BB}	Supply voltage	-5.25	-5	-4.75	٧	
VIH	High-level input voltage	2			٧	
V _{IL}	Low-level input voltage			0.8	>	

$\textbf{Electrical Characteristics} \text{ (V}_{CC} = 5\text{V} \pm 5\%, \text{ V}_{BB} = -5\text{V} \pm 5\%, \text{ Ta} = 25^{\circ}\text{C}, \text{ unless otherwise noted.)}$

	Parameter	Test conditions		Limits		
Symbol			Min	Тур	Max	Unit
VoH	High-level output voltage, PA0H∼ PC5H	$I_{OH} = -50\mu A$	2.4			V
VoH	High-level output voltage, AB0H∼AB7H	I _{OH} = - 900μA	3.65			٧
VoH	High-level output voltage, AB8H~ABFH	$I_{OH} = -300 \mu A$	2.4			٧
VoH	High-level output voltage, RS0H, CLKH, HLAH, ALEL	$I_{OH} = -300 \mu A$	2.4			V
VoH	High-level output, other outputs	$I_{OH} = -400 \mu A$	2.4			٧
VoL	Low-level output voltage, PA0H~PC5H	I _{OL} =1.8mA			0.4	V
VoL	Low-level output voltage, AB0H~AB7H	I _{OL} = 16mA			0.5	٧
VoL	Low-level output voltage, AB8H~ABFH	I _{OL} =1.9mA			0.45	V
VoL	Low-level output voltage, CLKH, ALEL	I _{OL} = 8mA			0.4	V
VoL	Low-level output, other outputs	I _{OL} =1.9mA	-		0.4	V
Icc	Supply current from VCC	When 2 EPROMs are loaded.		0.6	1 .3	Α
IBB	Supply current from V _{BB}	When 2 EPROMs are loaded.		0.05	0 .2	Α
fcLK	CPU clock frequency			1.79		MHz
f _{CH1}	RF output frequency 1			91.25		MHz
f _{CH2}	RF output frequency 2			97.25		MHz
f _{SUB}	Color sub-carrier frequency			3.579545		MHz

MICROCOMPUTER SUPPORT SYSTEMS

MELCS 4/1 PORTABLE DEVELOPMENT SUPPORT SYSTEM

DESCRIPTION

The PC0400 was designed for development support for the M58840-XXXP single-chip 4-bit microcomputer, and for the debugging and maintenance of systems using the M58840-XXXP.

FEATURES

- RAM-base debugging capability
- Program execution and breakpoint capability from any address
- Single-step operating capability
- Display/alter capability for contents of all registers and flags in the CPU
- Write/erase capability for the M5L2708K EPROM
- Connection of users' systems by an accessory adaptor card or by cable
- Comes with convenient carrying case

APPLICATION

 The development, design, inspection and maintenance of hardware and software for systems using the M58850-XXXP.

FUNCTION

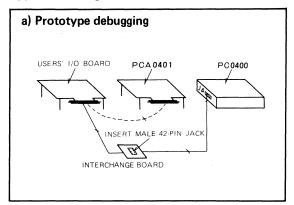
As can be seen in the block diagram, the PC0400 is composed of the following hardware:

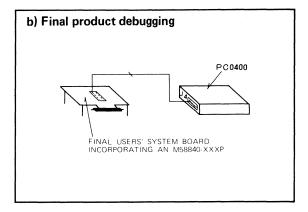
- 1. Monitor CPU and monitor ROM
- 2. Input ports
- 3. Output ports
- 4. Keyboard/display
- 5. EPROM writer and eraser
- 6. Program memory and control circuit
- 7. Debug CPU and peripheral circuits

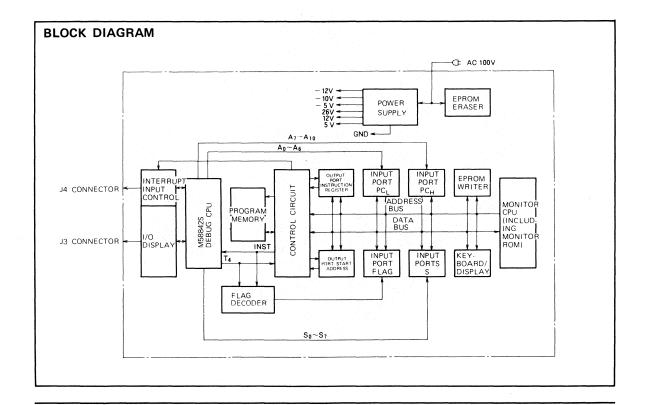
The debug CPU makes use of the M58842S MELPS 4 system evaluation device, supervised and controlled by the M5L8085AP monitor CPU. The program memory stores the memory under development, and is connected to the monitor CPU for program setting and confirmation of its contents, and to the debug CPU for program execution. The control circuits control the address bus and data bus of the program memory.

The EPROM writer is used to store the debugged program in the EPROM, accepting and displaying inputs from the keyboard.

Interfacing with users' systems is normally accomplished by means of a J4 42-pin connector. A J3 40-pin connector is used to interface with the touch-keyboard.

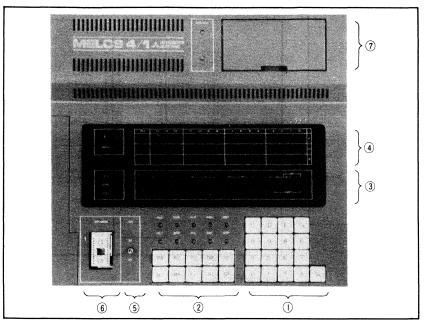

MELCS 4/1 PORTABLE DEVELOPMENT SUPPORT SYSTEM


OPERATION


As can be seen in the application diagrams the PC0400 is used in cases where the PCA0401 MELCS 4 single-board system-evaluation computer is applied to system evaluation, and is connected by its J4 connector via a relay board to the PMP connector of the PCA0401.

When the PCA0401 is not used, the PC0400 is used as an in-circuit emulator, connected by a J4 connector to the 42-pin socket of the users' system CPU.

Application Diagrams

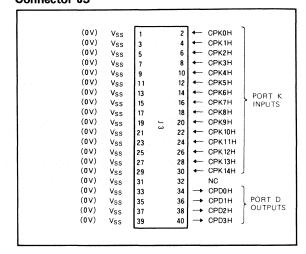


Panel Operation

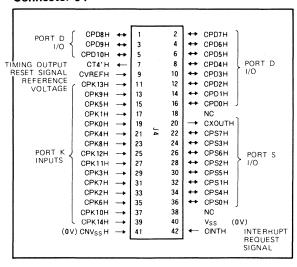
- Data Keys: 16 keys for hexadecimal correction entering, address, and other data, plus and E/N key for mode designation.
- 2 Command Keys: 10 keys labelled as follows:

~					
Name of key	Function				
RST	For resetting the M58842S debug CPU, also used for cancelling monitor mode designations and breakpoints.				
RUN	For starting programs from the desired address				
STP For executing programs from the desired address (single step) every instruction cycle.					
HLT	For halting program execution				
ВКР	For designating and confirming breakpoints				
PGM For confirmation or alteration of the contents of the program memory					
DAT For confirmation or alteration of the contents of the data memory of the debug CPU.					
REG	For confirmation of data in all registers, and alteration of data in the register displayed on ③				
P-L	Loads contents of EPROM to program memory				
P-G	Writes contents of the program RAM to the EPROM.				

- 3 7-Segment LEDs: 13 LEDs for the display of debug CPU status.
- (4) LESs: 40 dot LEDs for the display of the internal status and external status of the debug CPU.
- (5) Interrupt Control: For the debug CPU. Two positions: EI (enable int) and DI (disable int)
- 6 EPROM Socket: When occupied by the M5L2708K, S EPROM (equivalent to Intel's 2708), allows movement of data from the EPROM to the program memory and vice versa.
- (7) EPROM Eraser and Erase Switch: When the EPROM is inserted in the eraser and the switched pressed, a lamp lights and erasing begins and proceeds automatically by timer for approximately 25 min.


12

MELCS 4/1 PORTABLE DEVELOPMENT SUPPORT SYSTEM


SPECIFICATIONS

CPUs Monitor MSL8085AP Cycle time 10µs @ 600kHz operation Clock frequency 300 ~ 600kHz operation Six M5L2114LP (2K words x 9 bits) RAMs Adrifess: 3000 16 ~ 3FFF 16 Program loaded in RAMs from EPROM J4 42-pin for interfacing with users systems J3 40-pin for interfacing with touch-keyboard J1 40-pin for interfacing with touch-keyboard J2 40-pin for internal board connections J3 19-pin for power supply DS1, DS2 DS3 post for K port inputs without using the touch keys. When keys are used all 16 circuits are off. DS3 for CR/ceramic switching of the clock, and internal/external switching of VREF Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs External interrupt control switch Toggle switch for disable/enable enable Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 0 °C ~ 55°C Storage temperature - 30°C ~ 70°C Acces	Organiza	tion	4-bit parallel processing
CPUS Debug M58842 S Cycle time 10 μs @ 600kHz operation Clock frequency 300 ~ 600kHz, variable with internal CR/ceramic filter switching Six M5L2114LP (2K words x 9 bits) RAMs Address: 3000 to ~ 3FFF to Program loaded in RAMs from EPROM J4 42-pin for interfacing with users systems J3 40-pin for interfacing with users systems J4 40-pin for internal board connections J2 40-pin for internal board connections J5 19-pin for power supply DS1, DS2 DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. Explain time touch keys. When keys are used all 16 circuits are off. Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs Toggle switch for disable/enable External interrupt control switch Toggle switch for disable/enable EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 0 °C ~ 55°C Storage temperature - 30°C ~ 70°C Accessories Power supply cable user interface cable with DIL connector Adaptor card 1 Overall dimensions (carrying case) </td <td colspan="2"></td> <td></td>			
Clock frequency 10 28 @ 600kHz Operation	CPUs		
Clock frequency 300 ~ 600kHz, variable with internal CR/ceramic filter switching	Cools tim		
CR/ceramic filter switching Six M5L2114LP (2K words x 9 bits) RAMs Address: 3000 ₁₆ ~ 3FFF ₁₆ Program loaded in RAMs from EPROM J4 42-pin for interfacing with users systems J3 40-pin for interfacing with touch-keyboard J1 40-pin for internal board connections J2 40-pin for internal board connections J5 19-pin for power supply DS1, DS2 DS3, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. Keyboard/display DS3 by 3 for CR/ceramic switching of the clock, and internal/external switching of VREF Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs External interrupt control switch Toggle switch for disable/enable EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 0 °C ~ 55°C Storage temperature Power supply cable 1 User interface cable with DIL connector Adaptor card 1 Overall dimensions (carrying case) 363 x 363 x 135 mm	Cycle tin	ie	10μs @ 600κHz operation
Program memory RAMs Address: 300016 ~ 3FFF16 Program loaded in RAMs from EPROM J4 42-pin for interfacing with users systems J3 40-pin for interfacing with touch-keyboard J1 40-pin for internal board connections J2 40-pin for power supply DS1, DS2 DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. DS3 DS3 for CR/ceramic switching of the clock, and internal/external switching of VREF Keyboard/ display Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs External interrupt control switch Toggle switch for disable/enable EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. Storage temperature 70°C ~ 70°C Accessories RAMs Address: 300016 ~ 3FFF16 Program loaded in RAMs from EPROM Program loaded in RAMs from EPROM Input power supply DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. Toggle switching of VREF Toggle switch for disable/enable EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 100 ± 10% VAC 50/60Hz Operating ambient temp. 11 User interface cable with DIL connector Adaptor card 11 Overall dimensions (carrying case) 363 x 363 x 135 mm	Clock fre	quency	
Connectors J3 40-pin for interfacing with touch-keyboard J1 40-pin for internal board connections J2 40-pin for internal board connections J5 19-pin for power supply DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. DS3 DS3 for CR/ceramic switching of the clock, and internal/external switching of V _{REF} Keyboard / display Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs External interrupt control switch EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 0 °C ~ 55°C Storage temperature — 30°C ~ 70°C Accessories Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) 363 x 363 x 135 mm	Program	memory	RAMs Address: 3000 ₁₆ ~ 3FFF ₁₆
J2 40-pin for internal board connections J5 19-pin for power supply	Connecto	ors	systems J3 40-pin for interfacing with touch-keyboard
DS1, DS2 DS1, DS2 DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. DS3			
DS1, DS2 DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. DS3 DS3 for CR/ceramic switching of the clock, and internal/external switching of V _{REF} Keyboard/ display Keyboard 27 keys Display 13 7-segment LEDs and 40 dot LEDs External interrupt control switch EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. O *C ~ 55*C Storage temperature Power supply cable User interface cable with DIL connector Adaptor card 1 Overall dimensions (carrying case) 363 × 363 × 135 mm			
DS1, DS2 for K port inputs without using the touch keys. When keys are used all 16 circuits are off. DS3 DS3 for CR/ceramic switching of the clock, and internal/external switching of V _{REF} Keyboard / display 13 7-segment LEDs and 40 dot LEDs External interrupt control switch Toggle switch for disable/ enable EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 0 °C ~ 55°C Storage temperature — 30°C ~ 70°C Accessories Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) 363 x 363 x 135 mm			J5 19-pin for power supply
Clock, and internal/external switching of V _{REF}	switches	DS1, DS2	using the touch keys. When keys are
External interrupt control switch EPROM eraser Erasing time approx. 25min Input power supply Operating ambient temp. Correspondent temps O'C ~ 70°C Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) Display 13 7-segment LEDs and 40 dot LEDs and 40	Dip (DS3	clock, and internal/external
control switch enable EPROM eraser Erasing time approx. 25min Input power supply 100 ± 10% VAC 50/60Hz Operating ambient temp. 0 °C ~ 55°C Storage temperature — 30°C ~ 70°C Accessories Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) 363 x 363 x 135 mm			Display 13 7-segment LEDs and 40 dot
Input power supply Operating ambient temp. O °C ~ 55°C Storage temperature Power supply cable User interface cable with DIL connector Adaptor card Overall dimensions (carrying case) 363 x 363 x 135 mm			
Operating ambient temp. $0 ^{\circ}\text{C} \sim 55 ^{\circ}\text{C}$ Storage temperature $-30 ^{\circ}\text{C} \sim 70 ^{\circ}\text{C}$ Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) $363 \times 363 \times 135 \text{mm}$	EPROM 6	eraser	Erasing time approx. 25min
Storage temperature $-30^{\circ}\text{C} \sim 70^{\circ}\text{C}$ Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) $363 \times 363 \times 135 \text{ mm}$	Input pov	wer supply	100 ± 10% VAC 50/60Hz
Accessories Power supply cable 1 User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) 363 x 363 x 135 mm	Operating	ambient temp.	0 °C ~ 55°C
Accessories User interface cable with DIL connector 1 Adaptor card 1 Overall dimensions (carrying case) 363 x 363 x 135 mm	Storage t	emperature	−30°C ~ 70°C
(carrying case) 363 x 363 x 135 mm	Accessor	es	User interface cable with DIL connector 1
Weight 9 kg			363 x 363 x 135 mm
	Weight		9 kg

PIN CONFIGURATIONS Connector J3

Connector J4

MICROCOMPUTER SOFTWARE

MITSUBISHI MICROCOMPUTERS MELPS 42 SOFTWARE

CROSS ASSEMBLER

DESCRIPTION

The MELPS 42 cross assembler has been prepared for the development of application programs suitable for equipment using the M58496-XXXP single-chip 4-bit microcomputer.

This cross assembler not only provides many pseudo instructions, control commands, and control data for improving programming efficiency, but it also provides program versatility for changing instruction codes and functions.

FEATURES OF THE CROSS ASSEMBLER

- 3 types of control data
- Instruction codes and functions easily changed
- Catalogs the control data in disk storage
- Constants can also be expressed in non-decimal notations
- Printouts available from the tables and cross-reference lists
- Execution computer: MELCOM 70 (memory capacity more than 24K words, monitor BDOS)
- Implementation language: FORTRAN IV (parts are written in assembly language)

FEATURES OF THE ASSEMBLY LANGUAGE

- 6 pseudo instructions
- 77 machine instructions
- Decimal numbers can be used to define the constants of the machine instruction operand field.

INPUT/OUTPUT MEDIA

Source input : Punched cards and magnetic

disk

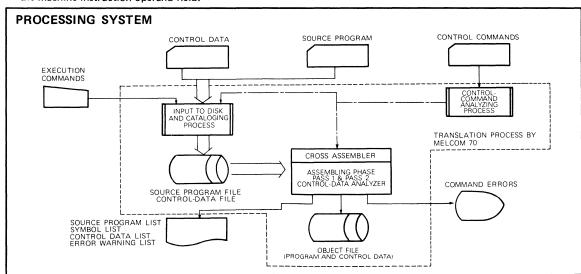
• Control data input : Punched cards and magnetic

disk

Control data command: Punched cards

• Execution command : System typewriter keyboard

Object output : Magnetic diskOutput lists : Line printer


FUNCTIONS

This cross assembler converts source programs written in the MELPS 42 assembly language to machine instruction codes that are filed in disk storage in the form of binary absolute object codes.

The MELPS 42 cross assembler is a 2-pass translator that provides data and control command analysis along with cataloging functions.

Modifying the instruction code and setting mnemonic tables and numeric tables to constants can easily be accomplished by means of the control data. In this way, programming versatility is provided for changing functions, allowing the user free selection in defining the mnemonics of the machine instructions, etc.

The standard version of the MELPS 42 assembly language has 7 assembler control commands (see Table 1). In addition 6 pseudo instructions (Table 2) can be used in the source language program.

PROGRAM ORDERING INFORMATION

Program name	Ordering number	Program and software manuals included			
MELPS 42 cross assembler	GBIA S0010	MELPS 42 Cross Assembler Manual GBM-SR 00-31A < 03A0 >			

MELPS 42 SOFTWARE

CROSS ASSEMBLER

CROSS ASSEMBLER

This cross assembler facilitates assembly by the use of the control commands shown in Table 1. Basically, it requires only the source program and control commands input by punched cards with control data being utilized only when necessary. All input is stored and filed in disk storage. The control data is processed by the control command analyzing processor, and the symbol table is created in pass 1. This is followed by pass 2, where each instruction is converted to machine language, while control data, labels and the assembly list are printed out as specified by the control commands. On the assembly list, the control commands, sequence numbers, location numbers and addresses are printed out, along with error and warning messages, followed by the ROM page list and the cross-reference list.

OBJECT LANGUAGE

The object file is composed of a name section and a text section.

The name section is filed on sector 0 of the object file and stores overall information such as the total number of instructions in the text section, control data, file name, source program file name, size of a single page and the module name.

The text section contains the data that controlled the conversion of the source program to instruction codes and other related data necessary for execution by the simulator.

ASSEMBLY LANGUAGE

The assembly language that the MELPS 42 cross assembler accepts consists of machine instructions and pseudo instructions

1. Machine Instructions

There are 77 basic machine instructions. These are converted to their corresponding machine codes and then assembled into an object program. For the mnemonics, instruction codes and their functional descriptions, please refer to the data sheet provided for the M58496-XXXP single-chip 4-bit microcomputer.

2. Pseudo Instructions

Although the pseudo instructions are written in the source program together with machine instructions, they are not converted to instruction codes but are used to control the assembler. The instruction codes will be written in the ROM.

The assembler-control instructions, numeric symbols defining instructions and list control instructions are among the pseudo instructions.

The pseudo instructions are shown in Table 2.

Table 1 Assembler control commands

	Command	Format	Function
	Execution start	/ / / RUN	Starts execution of the cross assembler
	Execution end	/ / / END	Terminates execution of the cross assembler
		///ASMB4, x, y, z	Assignment of assembly execution and control data and assembly listings
Input/oi	utput function assignment		x = (A) x : Assembly control A : Assembly needed y = (L) P : Designation of cataloging function y : Assembly listing z = (L) z : Control data listing L : Listing needed N : No listing needed
	Control data	///CDISK, XXXXX	Assignment of the control file name (max 6 characters)
File signment	Source program	///SDISK, XXXXX	Assignment of the source program file name (max. 6 characters)
control	Object	///BDISK, XXXXX	Assignment of the object file name (max. 6 characters)
Input/c	output device assignment	///INPUT, x, y	Assignment of input device for the control data and source program $ \mathbf{x} = \begin{pmatrix} \mathbf{C} \\ \mathbf{D} \\ \mathbf{N} \end{pmatrix} \qquad \qquad \begin{aligned} \mathbf{x} &: & \text{Control data input} \\ \mathbf{y} &: & \text{Source program input} \\ \mathbf{C} &: & \text{Punched card input} \\ \mathbf{D} &: & \text{Disk input} \\ \mathbf{N} &: & \text{Control data no input} \end{aligned} $

MITSUBISHI MICROCOMPUTERS MELPS 42 SOFTWARE

CROSS ASSEMBLER

Table 2 Pseudo instructions

Classification	Mnemonic	Instruction	Function			
	TTL	Program title declaration	Declares the program title			
Assembler control	PAGE	Program counter paging	Sets the counter to the top address of the next page			
instruction	ORG	Program counter setting	Sets the counter to the top address of the program			
	END	End declaration	Declares the end of the program			
Symbol value equiv- alence instruction	EQU	Symbol value setting	Sets a numeral value to the specific numeral symbol			
List control instruction	EJE	Page eject declaration	Advances the printout form to the next page during output			

3. Language Format

The following format should be used in coding programs in this cross assembler.

The single-line statement is composed of the label, instruction, operand, comment, and identification fields. The format of the source statement is fixed as indicated in Fig. 1. Although the constant is usually a decimal number, it may be expressed by hexadecimal notation when defined by pseudo instructions.

An asterisk (*) in the first column of a line indicates that the entire statement is used as a comment field.

The following are valid characters for use in statements:

Alphabetics: A~Z Numberics: 0~9 Special characters: ; = , \checkmark @ \$ + - * / ! & () . # % < > ? (space)

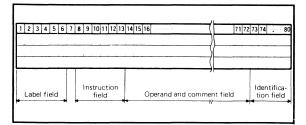


Fig. 1 Source statement format

(1) Label field

The value of the program counter at that time is set to the label. The number of characters used for a label is limited to a maximum of 6, and any of the alphanumerics and special characters specified above can be used. However, an asterisk (*) cannot be used in the first column of the label field.

(2) Instruction field

Mnemonic codes are written in this field, left-justified. For pseudo instructions, any of the mnemonics among the assembler-control instructions, numeric symbol definition instructions and list-control instructions may be used.

(3) Operand field

Parameters of the instruction are specified in this field. This field contains the label, defined symbol, or numerical value. The operand is stated from the 14th column, left-justified.

(4) Comment field

Whenever the operand is followed by more than one space to the end of the statement, the successive columns may be used for comments.

(5) Identification field

The use of this field is optional. Many find it convenient to use this field for a sequential identification card number.

MELPS 42 SOFTWARE

CROSS ASSEMBLER

ASSEMBLY LIST FORMAT

A source program prepared and assembled in the format indicated in the preceding paragraph may produce source, symbol table, cross reference, and ROM page list printouts. The format of an assembly list produced as an example is shown in Fig. 2. Please note that pages, locations, and object codes are indicated in hexadecimal notation.

MESSAGE FORMAT

Error and warning messages are printed out on the assembly list. In the case of errors, the message is printed out under the respective statement in the following format.

\$\$\$\$\$\$ERROR xxx\$

where "x x x" indicates the type of error by a numerical code.

In the case of warnings, the following message is printed between SEQ (sequential number) and LOC (location number):

* Wx * (where "x" indicates the degree of warning)

In addition the total number of errors and warnings are printed on the last line of the assembly list. The cross-reference list, however, will not be produced when any errors are indicated.

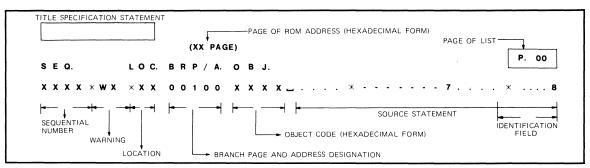


Fig. 2 Assembly list format

Example of an assembly list

An actual example of an assembly list for an assembly made with the MELPS 42 cross assembler is shown in Fig. 3.

EXAMP	LE 9	ROGR AM				PAGE)		P. 1
5E Q.	LOC-	•BRP/A•	овј.	•••••			CE STATEMENT*5*6*7.	8
1					TTL	EXAMPLE PROGRAM	<u> </u>	EXA00010
2					URG	. 0 • 0 EXCHANGE	3	EXA00020 EXA00030
4				* FILE	DATA	EXCHANGE		EXA00030
5				DIGMAX	FOU	13	DIGMAX=13	EXA00050
7	- 01	0E/00	100	DIGNA	BM	XCG 02	EXCHANCE FO & FO	EXA00070
á		35/01	101		36	4CG13	EXCHANGE FU & FZ	EXA000070
9		0E/07	107		3#	XCG23	EXCHANGE F1 & F3	EXA00009
10	04	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	200		NOP	ACGES	Exclinite 12 6 13	LANGUUG
11				•				EXA00100
12					ORG	E • 0		EXA00110
13				* SUBR	OUTINE	FILE EXCHANGE		EXA00120
14								EXA00130
15					EXCHA	MGE FILE M(2,X,O	-DIGMAX)	EXA00140
16				*				EXA00150
17	00		OCD	XCG02	LXY	O.DIGMAX	EXCHANGE FO (0-DIGMAX) & F2(0-DIGMAX) - (9)	EXA00160
18 19	01		ODC	xCG13	LXY	1.DIGMAX	EXCHANGE F1 (0-DIGMAX) & F3(0-DIGMAX) - 10	EXA00170
20	02		066	LBL4	TAM	2		EXA00180
21	03		062	CDL 4	XAH	2		EXA00190
22	04		068		XAMD	0		EXA00 200
23 +₩			102		8#	LBL4	BM IS EQUIVALENT WITH B ON PAGE 14	EXA00210 EXA00220
24	06		044		RT	CDL	DH 13 ENGIANTEMI MILL B ON NAGE 14	EXA00220
25			•	*				EXA00930
26	07		0ED	XCG23	LXY	2+13	EXCHANGE F2 (O-DIGMAX) & F3(O-DIGMAX)	EXA01010
27					CONHON	ROUTINE START		EXA01020
28								EXA01030
29	08		065	LBL5	TAM	1		EXA01040
30	09		361		XAM	1		EXA01050
31	OA		068		XAMD	0		EXA01060
32+W			108		8 M	LBLS		EXA01070
33	oc		044		RT			EXA01080
34					END			EXA01100

- ① The program name is declared as "EXAMPLE PROGRAM"
- ② It shows that the start of the program was set to page 0 address 0 by means of the program counter setting instruction.
- ③ An asterisk (*) in the first column indicates that the entire statement is a comment.
- Numeric value 13 (decimal number) is assigned to the symbol DIGMAX by means of the symbol value equivalence instruction.
- (5) The label XCG02 is assigned by means of the BM instruction during the assembly process, and calls the subroutine starting at page 14 address 00.
- ⑥ The label XCG13 is assigned by means of the BM instruction during the assembly process, and calls the subroutine starting at page 14 address 01.
- The label XCG23 is assigned by means of the BM instruction during the assembly process, and calls the subroutine starting at page 14 address 07.
- (8) This whole statement line is used as a comment field.
- The numerical value 0 is loaded in register X of the data pointer and 13 (decimal number) in register Y by means of the LXY instruction. As written, the results of this LXY instruction are nullified by the results of the following LXY instruction.
- (1) The numerical value 1 is loaded in register X of the data pointer and 13 (decimal number) in register Y by means of the LXY instruction.
- (1) The BM instruction in this case assigns the branch address of the label LBL4 to address 02 of page 14.

MITSUBISHI MICROCOMPUTERS MELPS 42 SOFTWARE

PAPER-TAPE GENERATION PROGRAM FOR PROM WRITERS

DESCRIPTION

MELPS 42 PROM writer paper-tape generation programs are used to convert the absolute binary object program generated by the MELPS 42 cross assembler into another format that can be used in a PROM writer. The program is output on paper tape in the new format.

With this program, a binary object program can easily be converted to hexadecimal object format that can be programmed directly into a PROM. It can produce paper tapes that meet the requirements of Takeda Riken's and Minato Electronics' PROM writers.

FEATURES

- Outputs the binary object program in the disk storage to paper tape in hexadecimal format
- Paper-tape output can be partitioned with a simple control command
- May be used in conjunction with the MELPS 42 cross assembler
- Execution computer: MELCOM 70 Minicomputer (memory capacity more than 16K words, monitor BDOS)
- Programming language: FORTRAN IV (parts are written in assembly language)

INPUT/OUTPUT MEDIA

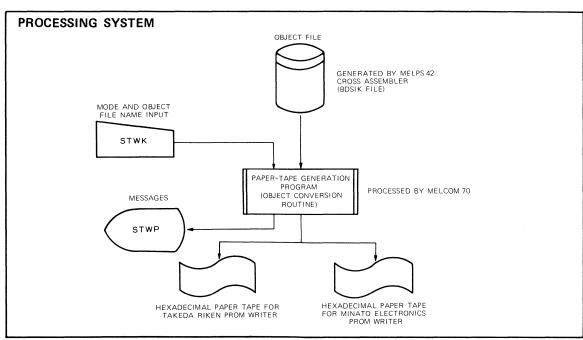
Input : Cartridge disk storage

Output : Paper tape (ASCII code, even

parity)

Control command input: Through the keyboard of the

system typewriter


Messages : System typewriter printout

APPLICATIONS

 For preparing programs for 1K words X 8-bit EPROMs (M5L2708K, S), etc., which are to be programmed by PROM writers supplied by Takeda Riken or Minato Electronics.

FUNCTIONS

This program is used for converting the absolute binary object format programs generated by the MELPS 42 cross assembler to hexadecimal object format compatible with the PROM writers manufactured by Takeda Riken (T310) and Minato Electronics (model 1380). The paper-tape output is partitioned in accordance with PROM capacity (number of bytes).

PROGRAM ORDERING INFORMATION

Program name	Ordering number	Program and software manuals included
MELPS 42	GBISP 0006	MELPS 42 paper-tape generation program for PROM writer manual
paper-tape generation program for PROM writer	up.o. 5555	GBM-SR 00-33A (03AO)

MELPS 42 SOFTWARE

PAPER-TAPE GENERATION PROGRAM FOR PROM WRITERS

PROGRAM PROCESSING

The program has conversion routines for Takeda Riken's and Minato Electronics' PROM writers. Select T₁ mode (for Takeda Riken's PROM writer) or M₁ mode (for Minato Electronics' PROM writer) through the system typewriter keyboard. Then the object program is converted to paper tape compatible with the selected PROM writer. When a (BDISK file) file name is called, a paper tape is output for the PROM writer. When a number of programs are to be converted from the same file, successive calls can be made until all the programs are converted. Termination of the job is directed with the E command, and control is then returned to the monitor.

The object file consists of name and text segments. The data to be converted is contained in the text segment. Instruction codes, stored after sector 1 of the disk, that corresponds to machine instructions are converted to hexadecimal codes and output to paper tape.

Example of Hexadecimal Paper-Tape Format

This program can generate paper tapes for Takeda Riken's PROM writer or Minato Electronics' PROM writer. Examples of both formats are shown in Figs. 1 and 2.

Example of Object Conversion

The program at present can output 1K-word units of paper tape up to a total of 4K words. An example is shown in Fig. 3.

Error Processing

When an error is encountered during object conversion, a message will be printed out in the following format:

\$\$\$\$\$\$\$ xxx\$

where, XXX indicates the error code.

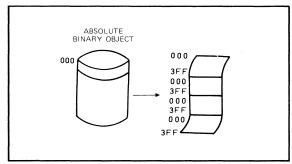


Fig. 3 Example of object conversion

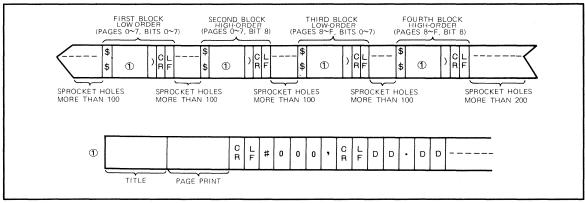


Fig. 1 Example of hexadecimal paper-tape format of Takeda Riken

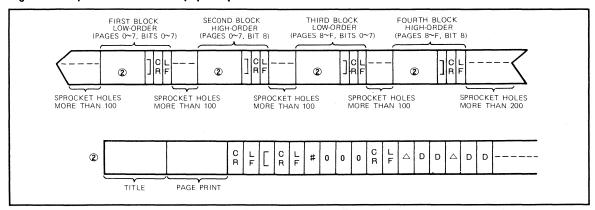


Fig. 2 Example of hexadecimal paper-tape format of Minato Electronics

CONTACT ADDRESSES FOR FURTHER INFORMATION

JAPAN

Electronics Overseas Division Mitsubishi Electric Corporation 2-3, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Telex: 24532 MELCO J Telephone: (03) 218-3473 (03) 218-3499

HONG KONG

Ryoden Electric Engineering Co., Ltd. 22nd fl., Leighton Centre 77, Leighton Rd. Causeway Bay, Hong Kong Telex: 73411 RYODEN HX Telephone: (5) 790-7021

TAIWAN

Mitsubishi Electric Corporation Taipei Representative Office Room 1303, 13th fl., Huei Fong Bldg. 27, Sec. 3, Chung Shan N. Road Taipei, R.O.C.
11211 MITSUBISHI

Telephone: (597) 3111

Mitsubishi Electronics America, Inc. 2200 West Artesia Blvd. Compton CA 90220, U.S.A. Telex: 698246 MELA CMTN Telephone: (213) 979-6055

(213) 979-6371

Mitsubishi Electronics America, Inc. 100 Wade Ave. South Plainfield, NJ 07080, U.S.A. 833244 MELA SOPH Telex: Telephone: (201) 753-1600

(800) 631-5377

Mitsubishi Electronics America, Inc. 1230 Oakmead Parkway Suite 206 Sunnyvale CA 94086 U.S.A. Telex: 172296 MELA SUVL Telephone: (408) 730-5900

WEST GERMANY

Mitsubishi Electric Europe GmbH Brandenburger Str. 40 4030 Ratingen, West Germany 8585070 MED D Telex: Telephone: (02102) 44089~44094

Mitsubishi Electric (U.K.) Ltd. Otterspool Way, Watford, Hertfordshire WD2 8LD, U.K.

Telex: 927908 Telephone: (923) 40566~9